Tag archive

biodiversity - page 4

Weeds: Don’t Shoot the Messenger

in 2018/Crop Production/Grow Organic/Land Stewardship/Organic Standards/Pest Management/Summer 2018

(Not Until You Understand the Message)

Av Sing

This article first appeared in The Canadian Organic Grower, with thanks.

All too often when farmers start talking weeds, a common first question is “How do I get rid of a bad case of…?” when a more appropriate question is “I wonder why my field has a bad case of…?”

The subtle difference in the above question requires a surprisingly dramatic paradigm shift in your view of weeds. Weeds must shed their role as problems, pests, and sources of frustration, and instead take on the role of symptoms, storytellers, and healers. Weed advocates consider weeds as plants with a mission and look to learn what the weeds can tell us about our soil conditions (e.g. pH, drainage, compaction, etc.) or our management practices (e.g. crop rotation, row spacing, stocking rate, tillage, etc.).

Weeds Redefined

Nicolas Lampkin, in Organic Farming, stresses that it is the human activity of agriculture that generates weeds. He defines a weed as “any plant adapted to man-made habitats and interferes with human activities.” For weed spin doctors, even that definition is too harsh because it focuses too much on the negative. The first step in our weed propaganda is to begin viewing the appearance of weeds as beneficial.

We are all familiar with the saying nature abhors a vacuum. Well, cultivation essentially creates a vacuum where whole communities of plant and soil life are disrupted and/or destroyed. Nature responds with weeds. Within days, pioneer plants such as pigweed, lamb’s quarters, and purslane grow rapidly and thickly. They anchor the soil and generate organic matter that feeds the soil life. These fast-growing annuals also provide shade, hold moisture, and moderate soil temperatures that allow other plants, such as biennials and perennials (including grasses), to initiate growth. If left for another season, this land will have fewer fast-growing annuals and favour later successional plants.

In our fields, the soil is in an unnatural state of continuous disturbance and as a result we primarily deal with the early colonists. Most of these fast-growing annuals grow without associated mycorrhizal fungi (primarily because their life cycle is too short to benefit from a symbiotic partnership). Expectedly, soils rich with mycorrhizal fungi (e.g. pastures, forest floors, agricultural soils rich in organic matter, especially through the use of compost) have fewer annual weeds. Elaine Ingham of Soil Foodweb Inc. suggests that the presence of the fungi serves as a signal that keeps annual weeds from germinating.

Learning From Your Weeds

Now that we better appreciate why weeds appear in our farms and gardens, we can take a closer look at how we can use weeds as indicators for our soil conditions. It is important to note that many weeds can tolerate a wide range of conditions and therefore the appearance of a few individual weeds are not necessarily proof of an underlying soil condition. For example, both perennial sow thistle and dock indicate poor drainage, but dock prefers more acidic soils, while thistle favours a higher pH. You can however learn about the conditions if the weed population is dominated by several species that all prefer similar conditions. For example, if plantain, coltsfoot and ox-eye daisies are the predominant weeds, this could indicate that the soils are waterlogged or have poor drainage.

Agricultural practices such as cultivation, fertilization and grazing management can have a great impact on the soil and, in turn, on the appearance of particular weed species. Frequent tillage will disturb the billions of viable seeds in the soil seed bank and, with sunlight, these will germinate and occupy bare soil. Weeds such as lamb’s quarters and redroot pigweed can produce 75,000 to 130,000 seeds per plant (respectively), which can remain viable in the soil for up to 40 years.

The presence of legumes, such as vetch, medic and clover, may suggest that the soil is lacking nitrogen. In contrast, weeds growing on the same soil that appear pale yellow and/or stunted also indicate low fertility. Overgrazing of pastures may lead to compacted soils and then the presence of perennial bluegrass species and bentgrasses may predominate.

The lack or imbalance of calcium can allow soils to become compacted and without the proper biology in the soil (fungi in the case of calcium), calcium will not stay in the soil.

Soil pH

In addition to helping protect and improve the organic matter content of the soil, weeds can also indicate the acidity or alkalinity of the soil. Most agricultural crops do best in a slightly acidic soil (pH of 6 to 6.5). An increasing presence of weeds such as plantain, sorrel or dandelion may suggest that the pH is dropping below a desirable level. However, having acidic soils should not be viewed as detrimental. Much of Albrecht’s work highlighted that poor plant performance on low pH soils was in fact a consequence of low soil fertility or an imbalance of soil nutrients, rather than soil pH. For example, many alfalfa growers have witnessed a dramatic invasion of dandelions after spreading high levels of potash. Essentially, the potash had suppressed calcium levels in the soil. The deep-rooted dandelion scavenges calcium from lower depths and upon its death released the calcium at the soil surface. The appearance of dandelions may be interpreted as indicating acidic soils when in fact the ratio of calcium to potassium caused their appearance.

Extreme Weed Makeover: Look for the Positive in Weeds

  • Weeds can act as a green manure or cover crop.
  • Weeds can serve to cycle nutrients from the subsoil (e.g. deeprooted weeds such as dandelions or burdock).
  • Deep-rooted weeds can break up hard pans, thereby regulating water movement in the soil.
  • Weeds can conserve soil moisture.
  • Weeds can provide habitat for beneficial organisms.

An imbalance of magnesium relative to calcium can lead to tight soils and eventually anaerobic conditions. Calcium causes soil particles to move apart, providing good aeration and drainage; fungi help to prevent the leaching of calcium out of the soil. Magnesium makes particles stick together and if soils become too tight, oxygen becomes limited and beneficial forms of soil life disappear. In such conditions, organic residues in the soil do not decay properly, and increased carbon dioxide in the soil favours fermentation of the organic matter, resulting in byproducts such as alcohol and formaldehyde. These substances inhibit root penetration as well as create favourable conditions for soil diseases such as pythium and phytophora. Fermentation can also create methane gas which is conducive to the appearance of velvetleaf, or ethane gas which helps jimsonweed to prosper. Grasses with their fine and numerous roots attempt to break up tight soils, while the presence of many grassy weeds may indicate tight soils.

Mycorrhiza is a symbiotic association between fungi and plant roots. Most agricultural crops depend on, or benefit from, their associations with mycorrhizae. In exchange for carbon from the plant, mycorrhizal fungi make phosphorus more soluble and bring soil nutrients (N, P, K) and water to the plant. The Cruciferae family (e.g. broccoli, mustard) and the Chenopodiaceae family (e.g. lamb’s quarters, spinach, beets) do not form associations with these fungi. Frequent tillage, fungicides and high levels of N or P will inhibit root inoculation. Similarly, the practice of fallowing will reduce levels of mycorrhizae because the plants that establish following tillage usually do not form associations with the fungi.

This article is based primarily on the knowledge and observations of farmers who wanted to better understand the connection between what was growing in their soil and the various management practices they were employing.

The American poet Emerson once wrote, “What is a weed? A plant whose virtues have not yet been discovered,” perhaps referring to their greatest virtue to farmers as messengers of the soil.

Recommended reading (available from the COG library): 

Pfeiffer, E.E. (1981). Weeds and what they tell. Biodynamic Farming and Gardening Assoc, USA.

Soil Association. (1982). The Value of Weeds. Soil Association, UK.


Av emphasizes farmer-to-farmer knowledge exchange and works to hone farmer intuition in making management decisions. Currently, Av serves as a cannabis cultivation advisor to many Licensed Producers in North America and the Chief Science Officer with Green Gorilla (a Hemp and Cannabidiol Company). Av is also serving as the Vice-President of the Canadian Organic Growers and is proud to be a member of Slow Food Canada, Food Secure Canada, and the National Farmers’ Union. Av is also a faculty member at Earth University (Navdanya) in India where he delivers courses on agroecology and organic farming. Av can be reached for questions or comment at 902-698-0454 or av@fs-cannabis.com.

SaveSave

A New Model for Integrated Habitat Development

in 2018/Crop Production/Grow Organic/Land Stewardship/Summer 2018

For Bees, Birds, and Fish (IEHD-BBF)

Saikat Kumar Basu

Global bee populations are showing an alarming decline due to a number of factors like environmental pollution, indiscriminate use and over applications of various agro-chemicals, industrial agricultural practices detrimental to nature, changes in the land use patterns, and parasitic diseases of bees as well as lack of adequate supply of nectar and pollens for different bee species due to lack of suitable of bee foraging plants and natural melliferous flora. The challenges are not just restricted to honey bees and/or native bee species, but also to other insect pollinators such as moths, butterflies, and certain species of pollinator-friendly flies and beetles. Under these circumstances it is important to conserve the endangered bee species and other pollinator insects, mollusks (snails and slugs), birds (certain humming bird species), and mammals (bats) helping in the process of natural cross pollination.

A large number of global food and industrial/commercial crops, forage crops, wildflowers, ornamentals, vegetables, and forest species are dependent on biological agents or vectors of cross pollination for their successful reproduction and survival. The yield loss due to lack of suitable pollinators for cross pollination is a serious threat to the future of global agriculture as well as for maintaining the balance of our natural ecosystems. Loss of honey bees are having detrimental socio-economic impacts on the apiculture industry; and thereby impacting the livelihood and social security of millions of individuals around the planet.

A Stratiomyid fly foraging on wild chamomile flower. Photo credit: Saikat Kumar Basu

Establishing suitable pollinator (bee) gardens or habitats or sanctuaries at suitable sites could prove to be instrumental in both bee and other pollinator insect conservation from a long term, ecological perspective. Using suitable pollinator mixes comprising of native grasses, wildflowers as well as annual, biennial, perennial forage crops (forage grasses, legumes, different Brassica family members) can help in establishing pollinator gardens, habitats, or sanctuaries in perimeters of forested areas, under used or unsuitable agronomic lands, unused and available rural locations, city and municipal parks and gardens, lawns, kitchen gardens, unused or hard to farm areas, in sites adjacent to natural or artificial waterbodies like ponds, pools, ditches, swamps, bogs, streams, or irrigation canals.

Aquatic Habitats

Freshwater wetland habitats need to be protected to conserve the aquatic ecosystems, the rich biodiversity associated with itand to protect nature for our future generations. Protecting freshwater wetlands does not necessarily require huge expertise, funding, or high levels of technology applications, but rather. simple innovation, creativity, awareness, and the desire to develop comprehensive multi-layer conservation strategy in the line of Multiple Tier Conservation Model (MTCM). A well managed and carefully planned freshwater aquatic habitat conservation strategy could be establishing Integrated Ecological Habitat Development for Bees, Birds and Fishes (IEHD-BBF). This proposed model targets multiple trophic levels within a dynamic natural or artificial freshwater ecosystem to conserve multiple species simultaneously.

Aquatic habitat integrated with pollinator conservation can provide multi level species protection for bees, birds, and fishes. Photo credit: Saikat Kumar Basu

Natural or artificial aquatic habitats like pools, ponds, ditches, swamps, bogs, lakes, canals, etc… could be targeted for ecological restoration by planting short or high grasses, salt tolerant aquatic plant species, and grasses along with pollinator mixes comprising of annual and/or perennial legumes, wildflowers, and related pollinator friendly plant species or melliferous flora around target fresh water habitats. Such mixes will not only restore aquatic habitats, but also attract small and medium sized land birds and a wide diversity of pollinator insects like honey bees, native bees, moths, butterflies, certain species of pollinator beetles, and flies for nectar foraging, nesting, and breeding purposes.

From Flora to Fauna

If the waterbodies are well stocked with indigenous fish species, well protected grassy aquatic habitats will also attract a wide diversity of aquatic birds to nest, forage, and breed in such unique environmentally restored ecosystems. An integrated Bees, Birds and Fishes Conservation Model (BBFCM) can be extremely useful in protecting multiple species at the same time and location.

Ideal pollinator foraging plants can help build sustainable pollinator sanctuaries. Photo credit: Saikat Kumar Basu

Grasses in the mixes can help in soil erosion and restoration, as well as phytoremediation, while legumes will enrich the soil with natural nitrogen resources without application of any synthetic fertilizers. Care must be taken to avoid using any pesticides in such habitats to prevent chemical pollution. Over time, such aquatic habitats will also attract local wildflowers and aquatic plants to grow and thrive in these ecosystems attractive to various species of both terrestrial and aquatic insects including active pollinators, along with small to medium sized terrestrial and aquatic birds to nest and forage in such restored aquatic habitats. Well stocked waterbodies with native fish species will promote native fish conservation and at the same time provide a stable food source for a number of aquatic birds.

Small and medium sized mammals, reptiles, and amphibians will also be able to establish in such ecosystem utilizing the growing complex food chains and food webs over time. Overall, the innovative and multi-trophic level Integrated Ecological Habitat Development for Bees, Birds and Fishes (IEHD-BBF) model has huge potential for restoration and reestablishment of natural and artificial aquatic ecosystems with minimal care, attention, management and funding. Such ecological restoration using the IEHD-BBF model can serve the needs of dwindling bees and insect pollinator populations, along with local resident and migratory birds and indigenous fishes to successfully multiply in an integrated multi-species catering dynamic ecological system.

Nevade bee foraging on Phacelia in a restored ecosystem. Photo credit: Saikat Kumar Basu

Regionally Specific Ecological Restoration

It is important however to note that plant yield and adaptation varies according to different ecosystems and agro-climatic conditions. It is also important to note that plants exhibit a strong Genotype X Environment interaction (G X E or GE effect). As a consequence, it is not advisable to use same pollinator mix at different locations and habitats for integrated habitat development. Locally adapted biodiverse pollinator mix selected through multi-location trials under varied geographical, geological, ecological, and climatic variations across different latitudes needs to be seriously evaluated for optimal results. Locally adapted pollinator mix with their unique combination of diverse species suited and adapted for individual agro-climatic and ecosystem regions has the potential to yield optimal results.

The flowering periods of the components of the pollinator mix need to be thoroughly investigated and tested against specific environment to evaluate what diversity of natural insect pollinators they are attracting and how well the plants included in the pollinator mix are adapting to the local parameters, withstanding competition against local weeds under field conditions. It will be important to identify the plant species that are performing best under natural conditions at different agro-climatic conditions with respect to establishment, regeneration, and attracting natural insect pollinators. If judicious selection of appropriate plant species is made with local adaptation to agro-climatic variability across different families; and with different flowering period; the resultant pollinator mix will be more suitable and yield optimal results in protecting and conserving pollinators as well as help is establishment or restoration of natural ecosystems.

Canada geese family in restored habitat. Photo credit: Saikat Kumar Basu
Bee foraging on sainfoin flower. Photo credit: Saikat Kumar Basu

Saikat Kumar Basu has a Masters in Plant Sciences and Agricultural Studies. He loves writing, traveling, and photography during his leisure time and is passionate about nature and conservation.

Feature photo: Pollinator sanctuaries can help establish small ecological units over time. Credit: Saikat Kumar Basu

SaveSave

Footnotes from the Field: Celebrating the Flight of the Bumblebee

in 2018/Footnotes from the Field/Land Stewardship/Organic Standards/Summer 2018

Marjorie Harris BSc, IOIA V.O. P.Ag

When I think of the ‘wholeness’ of a bioregional ecosystem and imagine the inner workings to identify which biological organisms could have the greatest influence on the entire system, nothing seems to compete with the influential power of the domesticated honey bee.

This industrious pollinator flies great distances to gather nectar and pollen. The Canadian Organic Standards (COS) Clause 7.1.10 recognizes the prodigious flying capacity of the honey bee by requiring apiaries to be protected by a three kilometre buffer zone from pesticides, GMO crops, sewage sludge, and other environmental contaminants. I decided to calculate just how big of an area a three kilometre radius would cover—an astounding 28.27 square kilometers! Wow! The domesticated honey bee’s influence in a bioregion extends over a huge pollination territory.


RELATED ORGANIC REGULATIONS

CAN/CGSB-32.310 7.1.10 Location of hives
Where sources or zones of prohibited substances are present, that is, genetically engineered crops or environmental contamination, apiaries shall be protected with a buffer zone of 3 km (1.875 mi.).

CAN/CGSB-32.310 7.1.7 When bees are placed in wild areas, impact on the indigenous insect population shall be considered.


In stark contrast to the honey bee’s huge domain is the relatively small realm of influence the humble bumble bee commands. There are well over 450 native bee species in British Columbia and 45 of those are bumble bees.

The bumble bee is the only other social bee that makes honey. Bumble bee colonies are very small containing between 50 to 200 bees. Seventy percent of the colonies are formed by ground nesters, while others nest in cavities of dead wood or pithy stems.

The average bumble bee species will only travel 100 to 200 m from the home nest to collect nectar and pollen. The average domain of pollination influence for a bumble bee is between 0.031 km2 and 0.13 km2. Putting this all into perspective, for each honey bee colony’s influence domain of 28.27 km2 there could be between 200 to 900 humble bumble bee ground nesting colonies competing for many of the same nectar and pollen resources!

Frisky bumblebee. Credit: Gilles Gonthier

The good news for bumble bees is that many of them are specially designed to harvest nectar and pollen from native flowers that honey bees can’t access. The bad news is that native bee populations are in decline due to loss of native foraging habitat, pesticides, and mechanized farming destroying nests by tilling the soil.

Social bee colonies form ‘super organisms,’ with all individuals working for one home. The honey bee’s ‘super organism’ even exceeds in bioregional influence the largest organism on planet Earth, a honey fungus that extends its reach over 10.36 km2 of the Malheur National Forest in the Blue Mountains of Oregon. Honey fungus is a plant parasite that manages its domain by selecting which plants live within its territory. The fertilization by pollination of plants by the bee has a similar selection effect on the ecosystem. By geographic area, one domestic honeybee hive has three times the bioregional influence of the largest organism on earth.

COS clause 7.1.7 recognizes that imported domestic honey bees have an impact on the indigenous insect populations. I would say that even though the vast majority of farmers cannot qualify to produce organic honey themselves, it should be recognized that the conventional production of honey is having a major impact on our native pollinators. Taking the lead from clause 7.1.7, we can conscientiously strive to protect and provide forage habitat and safe nesting sites for the humble bumble bee and other native pollinators.

Brown-belted Bumble Bee (Bombus griseocollis). Credit: Andrew C
Brown-belted Bumble Bee (Bombus griseocollis). Credit: Andrew C

By providing forage habitat and safe nesting sites for bumble bees, we are having a direct influence on the health and wealth of our home bioregional ecosystem. As an environmentally conscious and active community, we can have a positive impact in our bioregion by providing for our indigenous insect pollinators as we mobilize ourselves to address the environmental needs of these indigenous insects.

There are so many delicious wild berries that need the bumble bee. The flowers on these berries are enclosed so it takes a bumble bee’s specialized long “tongue” to get to the plant’s nectar. As the bumble bee ‘buzzes’ on these flowers the muscles it uses for flying releases the flower pollen and sticks to its long body bristles to be transferred to other flowers.

Buffer zones are an excellent starting place to plant native vegetation, trees, shrubs, and flowers that will become oases of survival for the humble bumble bees.
If you need further inspiration, think about the near extinction of the native bee pollinator for the vanilla orchid, which produces vanilla beans, the shiny green orchid bee. All commercial vanilla bean operations must now employ hand pollination!

Another shocker in the news is that Walmart and other interested corporations have been patenting designs for robotic pollinators. I’d rather keep the robots out of the pollination equation, especially since we can set aside buffer zones and wild areas and gradually restore unfragmented sections of land devoted to a wide diversity of native pollinator vegetation, undisturbed nesting locations, and overwintering sites for bumble bee queens.

Check out the link below for a library of seasonal listings for pollinator plants to build your pollinator gardens. Celebrate the amazing bumble bee!

seeds.ca/pollinator/plant_canada/index.php


Marjorie Harris is an organophyte, agrologist, consultant, and verification officer in BC. She offers organic nutrient consulting and verification services supporting natural systems.

Feature photo: Bombus Impatiens. Credit: Katja Schulz

SaveSave

SaveSave

SaveSave

SaveSave

Organic Farming to Enhance Native Species

in 2018/Grow Organic/Land Stewardship/Living with Wildlife/Organic Standards/Summer 2018

Tanya Brouwer

Agricultural activities are often blamed for the demise of the planet’s environmental systems. It is not uncommon to hear about deforestation, drained wetlands, and dying grasslands when referencing agriculture. Yet the Canadian Organic Standard specifically states that “organic agriculture should sustain and enhance the health of soil, plants, animals, humans and the planet as one and indivisible.” This puts organic farmers in a unique and invaluable position as environmental stewards of some of the last large tracts of fertile land in the country.

Unfortunately, this noble mandate, while inspirational on paper, lacks the specific steps that organic farmers need to turn this goal into reality. It becomes necessary, then, for organic stewards to first turn inwards and understand the local, biogeoclimatic zone in which they operate. With this understanding, it becomes easier for farmers to recreate or retain habitat elements of the zone’s numerous ecosystems in order to bolster often dwindling populations of native species. At the same time, a knowledge of regional ecosystems allows organic operators to minimize farmer/wildlife conflict. The result is a scenario where farmers and wildlife form mutually beneficial relationships.

For example, many of the South Okanagan’s organic operations lie within the Bunchgrass biogeoclimatic zone (BG).  Very generally speaking, this zone is characterized by moderate winters, hot summers, and very little precipitation. Grasses are the dominant vegetation, interspersed with Rabbitbrush, Big sagebrush, and Antelope brush among others. The wildlife species native to this zone, including birds, bats, mammals, and insects, have evolved with the climate and resultant plant life and rely upon these ecosystems to fulfil certain life cycles. Agricultural plant species, on the other hand, are not part of this coevolution and, alone, can disrupt natural life cycles forcing some native populations to diminish and others to become perceived ‘pests’.

The good news: it is possible for organic farmers to coexist with native systems within the farmed environment without decreasing production goals. For instance, the South Okanagan is home to many snakes. The rattlesnake and gopher snake are some of the most well-known and misunderstood. Through persecution and habitat loss their numbers have dropped significantly. What many farmers fail to realize is that snakes, protected under the BC Wildlife Act, are an organic farmer’s friend for effective and ‘approved’ rodent control, so populations should be encouraged in a safe manner.

In the South Okanagan, rocky slopes are often used as denning sites. These should be maintained with a buffer of natural habitat. In order to prevent farmer/snake conflict, habitat hiding spots like piles of rocks or wooden boards can be created and placed away from busy work areas. If all else fails and conflict cannot be avoided, particularly with rattlesnakes, a farmer may opt to install snake barrier fencing.

Wetlands are also a vital element of the dry BG zone and support at-risk species like the Blotched tiger salamander and the Great Basin spadefoot toad. Healthy wetlands help farmers by reducing mosquito populations, recharging aquifers, and minimizing flooding to non-wetland areas. With over 85% of the Okanagan’s wetlands destroyed, farmers would be wise to protect them. Ensuring organic fungicides are applied on low wind days avoids negatively impacting amphibians. Exclusion fencing is a good first step for livestock operators and appropriate buffers with native plantings are also recommended in non-livestock settings. Wetland re-creation is another option in fields where wetlands have been drained.

Admittedly, many organic farmers, particularly those growing fruit, might be hard pressed to find room for a relationship with birds. Many birds, however, are voracious eaters of insects that are also detrimental to fruit crops. And, like other native species, numerous populations of native birds are on the decline due to human related habitat loss and competition from non-native species like the European starling. For these reasons, the Lewis’s woodpecker, found in the South Okanagan, is considered threatened. To encourage its comeback, large standing dead or live Ponderosa pine or Cottonwood trees should remain intact as they provide important habitat for this species (BOX). Ensuring that vineyard netting is tight and not hanging loosely will prevent stolen grapes and inadvertent bird catch. As a final incentive, Lewis’s woodpeckers, like all migratory birds, are protected under the federal Migratory Birds Convention Act so meddling with this species and many others is considered illegal.

Of course, the tiny but mighty native pollinators should not be forgotten. Native species of bees, flies, moths, butterflies, and beetles are responsible for one of every three bites of food we take. Unfortunately, many of these populations are also on the decline. This is where native plants are especially important. In the South Okanagan, for example, the Mining bee is the first to emerge in the spring and benefits from Yarrow’s early bloom. As another example, the female Northern Checkerspot will lay her eggs on the underside of Rabbitbrush leaves. By planting a hedgerow or strip of native plants (or maintaining existing native habitat), organic farmers will help preserve species that are vital to crop success.

Obviously, many of these projects require some financial input. Additionally, learning this information requires time that many organic farmers simply do not have. Several communities and regions have stewardship societies with experts that will assist farmers in identifying critical habitat on their property. These groups are also aware of potential grants and other funding that can help fulfil conservation goals. Okanagan Similkameen Stewardship, Delta Farmland and Wildlife Trust, the Kootenay Conservation Program, the GOERT society on Vancouver Island, and the Environmental Farm Plan are great regional programs that farmers can access.

At the end of the day, organic farmers are also ecologists, managing the interrelationships of soil, water, plants, and animals to create a thriving, healthy operation. While the specific knowledge of local ecosystems may be new to some, it is likely that the nurturing of these ecosystem elements is a long time practice for many. Learning the details of a region’s biogeoclimatic zone is an extra step that will ensure the organic farmer is well on the way to fulfilling the organic standard’s mandate to protect Canada’s environment.

BIOGEOCLIMACTIC ZONE

BC is divided into 14 biogeoclimatic zones. Zones are large geographic areas with relatively uniform climate. They are named after 1, 2, or 3 of the dominant climax species. Spruce-Willow-Birch, Mountain Hemlock and Coastal Douglas-fir are some examples. Other provinces use different classification systems.

WILDLIFE PROTECTION

BC Wildlife Act: protects virtually all vertebrates from direct harm, except as allowed by regulations (e.g. hunting). Anyone who kills or harms an endangered or threated species can be fined $500,000 and three years in jail.

Migratory Birds Convention Act: federal legislation that protects all of Canada’s migratory birds, including their nests and eggs, unless allowed by regulations.

Large standing dead or live trees that provide valuable habitat for the conservation of wildlife are referred to as Wildlife Trees.


Tanya Brouwers is the Ecostudies coordinator for the Okanagan Similkameen Conservation Alliance. She also is an organic verification officer and a farmer. For any questions related to this article or to book a workshop, email her at ecostudies@osca.org.

Photo: Keith Manders, rancher, helping Okanagan Similkameen Stewardship plant native trees and shrubs to enhance a riparian buffer (along Aeneas Creek) on Garnet Valley Ranch in Summerland. Credit: Okanagan Similkameen Stewardship

Ask an Expert: Biodiversity and the Organic Standards

in 2018/Ask an Expert/Land Stewardship/Summer 2018
Stuart McMillan

An Inspector’s View

Stuart McMillan

This story originally appeared in The Canadian Organic Grower, Spring 2018, with thanks.

There are a number of great reasons to be an organic inspector. For myself, the primary one is getting to meet so many fantastic farmers, ranchers, and operators of organic operations across the diverse regions of Canada. Being able to ask people their reasons for decisions and directions on their operations is part of the job, and having them open up the entirety of their farms and facilities is an added perk. I have seen some stunningly beautiful corners of the country in my work. One element that stands out is the diversity of approaches taken in different regions of the country to achieve a common goal.

One of the strengths of the Canadian organic standard is that it recognizes the climatic and ecological diversity of the country and that the approaches taken in one region may not be suitable for another one. This approach is written right into the standards: “In the development of the standard, it was recognized that differences between Canada’s agricultural regions require varying practices to meet production needs” (CAN/CGSB-32.310, Introduction).

But this leads to one of the challenges I have encountered. Various goals and outcomes are mandatory across these regions. For example, it is expected that all organic products will come from a production system that “provides weed, pest, and disease control through enhancement of biodiversity, recycling of plant and animal residues, crop selection and rotation, water management, tillage, and cultivation” (CAN/CGSB-32.310, 1.2b).

This creates some curious challenges while trying to conduct an inspection in an efficient and expedient manner.How does one assess the enhancement of biodiversity? Some farms I have been to have a deep understanding of their region’s ecology and have implemented various practices to promote biodiversity, while other farms appear to not even know this is a requirement.

In recent years, the US organic standards have tried to strengthen their promotion of biodiversity with linkages with other agricultural conservation organization like the Natural Resources Conservation Society (NRCS) to promote best land use practices by farmers. NRCS has developed a focused organic program called “Conservation for Organic Farmers & Ranchers”.

To date, Canada has been slower to have extensive federal support to promote on farm biodiversity. With the reduction in provincial extension services, especially services that can provide organic expertise, farmers find their support networks limited. Without sound guidance on how to improve biodiversity in a meaningful manner, many farmers are uncertain how to move forward. As a result, we continue to find this discrepancy of ecological practices on organic (and non-organic) farms in Canada.

While the flexibility of the organic standards can be an advantage, they are also at times ambiguous. Ambiguity leads to confusion, confusion leads to inaction. Inaction, when it comes to promoting biodiversity on organic farms, leads to erosion of the goals and outcomes of the organic system.


Stuart McMillan is the manager of Legends Organic Farm. He inspected organic farms, ranches, and processors across North America for over 10 years.

Go to Top