Tag archive

agroecology - page 3

Footnotes from the Field: Climate Change

in Footnotes from the Field/Spring 2019

Are We on the Brink of an Ecological Armageddon?

Marjorie Harris BSc, IOIA V.O.

The United Nations’ 2005 Millennium Ecosystem Assessment Report identified that “biodiversity is an essential prerequisite for the maintenance of ecosystem services providing manifold benefits to human well-being.”

How is Climate Change Impacting the Biodiversity of our Planet’s Ecosystem?

Regional climate change hot spots have begun to undergo dramatic biodiversity reductions and, in some cases, ecosystem collapse due to temperature related food chain disruptions. Scientists in the field of phenology, the study of cyclic and seasonal natural phenomena relating to climate, plant, and animal life have found that rapid climate change is causing a decoupling of once synchronized light-sensitive cycles from temperature-sensitive cycles.

Slower shifts in climate over geological time frames are well recognized natural and cyclic phenomena. Climate studies have demonstrated that a climate shift 6,000 years ago in northern Africa converted the Sahara grassland savannahs to desert sands. Archeological evidence has found cave paintings in the desert showing mermaids and swimmers in the now-dry local lakes.

How Can We Know that Human Activities are Actually Contributing to an Increase in Global Temperatures?

As the Industrial Revolution was being propelled forward by the burning of fossil fuels, the Greenhouse Effect began building as those fossil fuels released greenhouse gases. The Industrial Revolution began in the 1760’s in Europe and had rooted in North America by the 1820’s.

Atmospheric carbon dioxide concentrations have risen by 39 percent and methane levels have risen to the highest concentrations in at least 650,000 years. These greenhouse gases prevent thermal radiation from leaving the Earth’s surface atmosphere with the ocean acting as a heat sink. The upper ocean layer’s heat content has increased significantly more in recent decades. As the ocean absorbs heat, waves, tides, and currents, move  that heat from warmer to cooler latitudes, and to deeper levels. Eventually this heat energy re-enters the land systems by melting ice shelves, evaporated water (rain), or by directly reheating the atmosphere. Heat energy stored in the ocean has a long life span—it can warm the planet for decades after it was absorbed.

Early oceanographers recorded ocean temperature data from 1872 to 1876 aboard the HMS Challenger. The ship sailed 69,000 nautical miles, recording 300 ocean temperature profiles at several depths. Fast forward to today’s Argo Project headed up by oceanographer Dr. Dean Roemmich. The Argo Project uses 3,000 free-drifting floats for long-term monitoring of global ocean temperatures and salinity every 10 days. In a recent scientific paper Dr. Roemmich reported the results, comparing today’s ocean temperatures to those taken by HMS Challenger’s crew. The study revealed an overall average temperature increase of 1.1 degrees Fahrenheit (0.59 degrees Celsius) at the ocean’s surface over the past 135 years.

Rising Ocean Surface Temperatures Directly Influence Global Weather Patterns

NASA scientists have developed computer simulations of historical weather data. These data described the ocean temperatures that created the weather conditions leading to the North American Dust Bowl from 1931 to 1939, considered to be the most significant meteorological event of the 20th century. NASA scientists found that the Atlantic Ocean surface temperature had risen by 1 degree Farenheit, and that the Pacific Ocean had experienced a cooling La Niña cycle. The combination triggered the drought weather patterns for the America Plains.

The Dust Bowl eroded 100 million acres into stripped and lacerated wastelands spanning Nebraska, Kansas, Colorado, Oklahoma, Texas, and New Mexico, with dust storms severely affecting a total of 27 states. Farms in the Dust Bowl lost an average of 480 tons of topsoil per acre. By 1940, the Dust Bowl conditions had prompted the relocation of 2.5 million people. The infamous Black Sunday storm on April 14, 1935 measured 200 miles across by 2,000 feet high with winds at 65 mph. The dust blocked the sunlight causing temperatures to drop 25 degrees Farenheit in one hour. During one severe two-hour period on Black Sunday, the violent storm stripped away twice as much soil as had been dug out over seven years to build the Panama Canal.

Hugh Hammond Bennett became known as the father of soil conservation in his work as founder and head of the US Soil Conservation Service. Bennett identified poor farming practices, deep plowing, denuded soil, removal of trees, and drought as the main causes of the Dust Bowl.

Under Bennett’s leadership, the US Soil Conservation Service initiated a 30-year program to restore and mitigate the damages of the Dust Bowl, including the replanting of denuded land. Bennett also set up programs to teach farmers better land management techniques such as leaving crop stubble in the field after harvest. Additionally, in the 1930’s, the US government purchased 11.3 million acres and replanted native grasslands. However, damage to the land was so severe, that by the year 2,000 some areas were still barren of growth and blowing dust.

Light and Temperature-Sensitive Ecosystem Cycles

Bennet stated, “the Kingdom of Nature is not a democracy; we cannot repeal natural laws when they become irksome. We have got to learn to conform to those laws or suffer severer consequences than we have already brought upon ourselves.”5

Here we are some 80 years after Bennett’s warning, and status updates report that climate change is moving forward unabated. An important factor in climate change is the disruption of ecosystem relationships by decoupling synchronized light-sensitive cycles from temperature-sensitive cycles.

Farmers are familiar with counting heat units to time the application of pest controls. This is because many insects—as well as reptiles, and amphibians—use temperature-sensitive cycles as cues for hatching emergence. Sex selection for some reptiles, such as crocodiles, is temperature based—the temperature of incubation will determine the sex of the offspring. This leaves many reptiles at-risk: an entire sex can be removed from the reproductive landscape in a few breeding seasons.

Phytoplankton communities are losing biodiversity in the face of higher ocean temperatures as natural selection is for more heat-tolerant groups. Phytoplankton make up only 0.2 percent of global primary producer biomass, yet they are responsible for about 50 percent of the world’s primary food production. In addition, phytoplankton are key components in the global carbon cycle. Reduction in the biodiversity of phytoplankton communities changes the primary producer profiles and reduces the resilience of the ocean ecosystem.

The concept of an Ecological Armageddon is emerging — Dr. CA Hallmann reports an 82 percent decline in flying insects at 63 protected sites in Germany, over a 27-year study period. Hallmann notes, “loss of insects is certain to have adverse effects on ecosystem functioning, as insects play a central role in a variety of processes, including pollination, herbivory and detrivory, nutrient cycling, and providing a food source for higher trophic levels such as birds, mammals, and amphibians. For example, 80 percent of wild plants are estimated to depend on insects for pollination, while 60 percent of birds rely on insects as a food source.”

In Puerto Rico’s Luquillo rainforest, researcher Bradford C. Lister found that biomass loss  increased from 10 to 60 times over the 30-year study period. Lister’s analysis revealed a synchronous decline in lizards, frogs, and birds that eat insects. Lister determined that the forest temperature had risen 2.0 degrees Celcius over the study period—a temperature change that prevented insect eggs from hatching, and reducing food supply for animals higher up the food chain.

Light-sensitive activities for mammals and birds include migration, breeding, and predation. As well, some plants are reliant on light-sensitive cues for growth stimulation.

For example, caribou populations in the Artic are in decline due to the decoupling of temperature and light-sensitive cycles. Pregnant caribou migrate to birthing grounds based on light cues to time their arrival with the emergence of nutrient-rich plant growth. However, due to rising artic temperatures, the plants are germinating earlier. When the pregnant caribou arrive to their feeding grounds, plant nutrition has already decreased—resulting in malnourished caribou mothers producing fewer calves. Another light-sensitive lifecycle example is the change in the Arctic mosquito cycle. Migrating birds rely on the larval Arctic mosquitos as a rich food source, but the mosquitos are hatching earlier under warmer temperatures. When birds arrive, the mosquitos are in their adult form, and the birds are without a source of food. The now unchecked mosquito population impacts the caribou lifecycle when caribou calves are predated to death by unusually gigantic swarms of blood-sucking adult mosquitos.

The butterfly effects of climate change on the intricacies of the planetary food web are only just emerging. Hopefully, we can adapt before an Ecological Armageddon occurs.


Marjorie Harris (BSc, IOIA VO) is an organophyte, consultant, and verification officer in BC. She offers organic nutrient consulting and verification services supporting natural systems.

References:
Roemmich, D, Gould WJ, Gilson J. 2012. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nature Climate Change. 2:425-428.  10.1038/nclimate1461
NASA Explains the Dust Bowl Drought: nasa.gov/centers/goddard/news/topstory/2004/0319dustbowl.html
Handy Dandy Dust Bowl Facts: kinsleylibrary.info/wp-content/uploads/2014/10/Handi-facts.pdf
The Dust Bowl: u-s-history.com/pages/h1583.html
The Dust Bowl, an illustrated history, Duncan & Burns, 2012 (pages 160 – 162)
Climate Change: Ocean Heat Content: climate.gov/news-features/      understanding-climate/climate-change-ocean-heat-content
Temperature and species richness effects in phytoplankton communities. ncbi.nlm.nih.gov/pmc/articles/PMC3548109/
Lister, B.C. Department of Biological Sciences, Rensselaer Polytechnic University, Troy, NY 12180 pnas.org/content/115/44/E10397.short
More than 75 percent decline over 27 years in total flying insect biomass in protected areas: journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809
The Millennium Ecosystem Assessment 2005: was called for by United Nations Secretary-General Kofi Annan in 2000 in his report to the UN General Assembly, We the Peoples: The Role of the United Nations in the 21st Century.

Organic Stories: UBC Farm, Vancouver, BC

in 2019/Climate Change/Crop Production/Grow Organic/Land Stewardship/Organic Stories/Past Issues/Seeds/Winter 2019

Cultivating Climate Resilience in a Living Laboratory

Constance Wylie

Surrounded by forest and sea, the University of British Columbia is a quick 30 minute bus ride west of downtown Vancouver. A city unto itself, more than 55,800 students and close to 15,000 faculty and staff study, work, live, and play there. A small but growing number also farms. Countless hands-on educational opportunities are offered at the UBC Farm: from internships and research placements for university students, to day camps and field trips for school children, to workshops and lectures for interested community members. There is something for everyone, including bountiful amounts of fresh organic produce.

Globally, agriculture accounts for 25% of the world’s greenhouse gas emissions. Half of that is from land use changes such as deforestation, while the other half is attributed to on-farm management practices and livestock. Moreover, our food systems are contributing massive amounts to our ecological footprint. Food accounts for about 50% of Vancouver’s footprint, according to UBC Professor Emeritus William Rees. Evidently, food can, and must, be an agent of change. In our rapidly changing world where the future of yesterday is uncertain, farmers are on the front line.

The folk at UBC’s Centre for Sustainable Food Systems are digging into these challenges using their very own “living laboratory,” aka UBC Farm, as a testing ground. It is a hotbed of leading agricultural research with “aims to understand and transform local and global food systems towards a more sustainable food secure future,” according to the farm website. It is also a green oasis where everyone is welcome to find a quiet moment to connect with nature; the hustle and bustle of campus dissipates on the wings of beneficial insects and chirping birds.

At 24 hectares, this certified organic production farm makes for a unique academic environment. As Melanie Sylvestre, the Perennial, Biodiversity, and Seed Hub Coordinator, puts it, “having a farm that does research in organic production is unique in BC and vital for the future of organic agriculture” in the province.

We can all whet our farming practices by reviewing some of the 30 ongoing research projects at UBC Farm. It should come as no surprise that many of the projects relate coping with the effects climactic changes have on agriculture, locally and globally.

UBC Farm. Credit Constance Wylie

Organic Soil Amendments

One such project is Organic Systems Nutrient Dynamics led by Dr. Sean Smukler and Dr. Gabriel Maltais-Landy. Their research compares the performance of typical organic soil amendments: chicken and horse manure, blood meal, and municipal compost. Depending on the type and amounts of organic soil amendment applied, crop yield will vary, and so too will the environmental impact. They found that often the highest yields result from over fertilization of Nitrogen and Phosphorus, which leads to greater GHG emissions. For example, chicken manure releases potent levels of GHG emissions.

It is a challenging trade-off to negotiate. This information is critically important for the organic grower trying to decrease their environmental impact. Another topic of study was the value of rain protection for on-farm manure storage: for long-term storage, it is always best to cover your manure pile!

Climate Smart

Were you aware that the application of black or clear plastic mulch with low longwave transmissivity can increase soil temperatures by about 40%? Conversely, a high reflective plastic mulch can reduce soil temperatures by about 20%. These are some of the findings of the Climate Smart Agriculture research team, composed of Dr. Andrew Black, Dr. Paul Jassal, and PhD student and research assistant Hughie Jones. In an interview for his researcher profile, Hughie explains that through his work he is “trying to get direct measurements … so that people have access to hard, reliable data” for enhancing crop productivity with mulches and low tunnels for season extension. “By increasing the amount of knowledge available we can reduce the amount of guessing involved for farmers, increasing their predictive power.” When it comes to getting the most out of a growing season, less time spent with trial and error can make a huge difference to your yields and income.

Fields of curcubits at UBC Farm. Credit Sara Dent @saradentfarmlove

Seed Savers

With the fall frost of 2018, the first phase of the BC Seed Trials drew to a close. The collaboration between UBC Farm, FarmFolk CityFolk, and The Bauta Family Initiative on Canadian Seed Security kicked off in 2016 to run these trials. Lead scientist and project manager Dr. Alexandra Lyon explained that the first phase asked, “What are the most hardy, resilient, well adapted varieties that we already have access to?”

More than 20 farms from across the province were involved in trialing seeds including kale, beets, leeks, and spinach. These varieties were chosen as crops that are already known to perform well in BC. The seeds in question are all open-pollinated varieties which boast “higher resilience then hybrid varieties in the face of climate change,” says Sylvestre, who has also been a leading figure in the seed trials.

While farmers may choose hybrid seed for their higher yields and other selected traits, Sylvestre explains that they lack “horizontal resistance, the concept of having diversity within a population allowing it to withstand various climatic changes. Through our selection process, we try to achieve horizontal resistance and therefore offer new varieties that would be better suited in various growing scenarios. It is important to understand that goal of horizontal resistance is among multiple other goals to reach varieties with agronomic traits that will be desirable to farmers and customers.”

“Community building around our local seed systems has been significant through this research project,” Sylvestre adds. The seed trials are also contributing to community building at UBC Farm itself. Rather than compost the crops grown for the seed trials, they are harvested and sold at the weekly farmers market.

With new funding secured from the federal government, the BC Seed trials will continue for at least another five years. Going ahead, the “role of UBC Farm is to train and connect farmers for farmer led plant breeding” says Lyon. While institutional academic research will play a significant role in seed selection and adaptation, “lots of types of seed trialing will be really important.” This means that farmers across the province “supported with tools and knowledge for selecting and saving seed” can contribute significantly to our collective seed and food security. Lyon encourages farmers to reach out with their experiences with regards to climate change and seed. She and members from the team will also be at the COABC conference February 22-24, 2019 with the intention to connect with BC farmers.

Ultimately, at UBC farm, “all the issues people are working on play into what we will need to adapt to climate change” says Lyon. The formal and informal networks made at UBC Farm are really starting to take root across the province. This is an amazing resource for us all to profit from. Take advantage of these slower winter months to dig in and digest the information available to us—it may very well change the way you approach your next growing season.

FOR MORE INFO

Check out UBC Farm online at: ubcfarm.ca

More on Organic Systems Nutrient Dynamics: ubcfarm.ubc.ca/2017/06/01/organic-soil-amendments

More on UBC’s Climate Smart Agriculture research: ubcfarm.ubc.ca/climate-smart-agriculture

For BC Seed trial results and updates: bcseedtrials.ca

Dr. Alexandra Lyon can be contacted at alexandra.lyon@ubc.ca

Seed grown at UBC farm is now available through the BC Eco-Seed Coop. Keep an eye out for two new varieties: Melaton leek and Purple Striped tomatillo.


Constance Wylie left her family farm on Vancouver Island to study Political Science and the Middle East at Sciences Po University in France, only to return to BC where she took up farming, moonlighted as a market manager, and got a PDC in Cuba and Organic Master Gardener certificate with Gaia College. She now lives, writes, and grows food in Squamish with her dog Salal.

Feature Image: UBC Farm. Credit: Sara Dent @saradentfarmlove

Ask an Expert: BC Seed Security

in 2019/Ask an Expert/Crop Production/Grow Organic/Seeds/Winter 2019

Scaling Up Organic Vegetable Seed Production in BC

Emma Holmes, P.Ag

The organic seed sector will be getting a boost through a comprehensive project that includes seed production, business, and market supports.

FarmFolk CityFolk, which has been working to cultivate local, sustainable food systems since 1993, will be leading the project with funding provided from the Governments of Canada and B.C. through the Canadian Agriculture Partnership. The five year, $3 billion Canadian Agricultural Partnership launched on April 1, 2018, and includes $2 billion in cost-shared strategic initiatives delivered by the provinces and territories, plus $1 billion for federal programs and services.

FarmFolk CityFolk will specifically be working on:

  • Developing a mobile seed processing unit to help small and mid-scale seed farmers efficiently and affordably process seed
  • Expanding seed production skills training in the Lower Mainland, Okanagan, Kootenays and North through focused in-person training and webinars
  • Supporting new entrants and small seed businesses with “Seed Enterprise Budgets” to help farmers plan and prepare for expenses, revenues and inventory management
  • Supporting Seedy Saturday events around the province by developing shared event planning resources

This project builds off of FarmFolk CityFolk’s previous work with the Bauta Family Initiative on Canadian Seed Security, as well as Dan Jason’s Seed Resiliency report commissioned by the Ministry of Agriculture this past winter. Jason’s report included an inventory of seed assets in the province as well as recommendations for increasing seed resiliency in BC.

Beet seeds. Credit: Chris Thoreau

British Columbia has the greatest diversity of crops and growing conditions of any province or territory in Canada. This provides a great opportunity to work with a wide range of ecosystems to create regionally tested and locally adapted seeds that support our local foodsheds in uncertain climates and that can also thrive in diverse climates around the world.

Seed production provides BC organic farmers with an opportunity to diversify their farm production and increase revenue. The market for certified organic seed is expected to continue to grow in the coming decades as the consumer demand for organic products increases and certifiers are adopting stricter enforcement around purchasing certified organic seed when available.

FarmFolk CityFolk will be collaborating with other organizations in BC focused on seed, such as the UBC Farm Seed Hub, KPU’s new lab for seed testing and cleaning (a major new asset for the province), and the BC Eco Seed Co-op. The strengths of these organizations, combined with the incredible passion and energy of local seed savers, farmers, and growers, will go a long way in supporting the development B.C.’s organic seed sector, the base of resilient communities and thriving food systems.

bcseeds.org


Emma Holmes has a BSc in Sustainable Agriculture and an MSc in Soil Science, both from UBC. She farmed on Orcas Island and Salt Spring Island and is now the Organics Industry Specialist at the BC Ministry of Agriculture. She can be reached at: Emma.Holmes@gov.bc.ca

Feature image: Examining carrots as part of the BC Seed Trials. Credit: Chris Thoreau

Local Seeds for Local Food

in 2019/Crop Production/Grow Organic/Organic Community/Seeds/Winter 2019

Michael Marrapese

Agriculture as we define it today has existed for roughly 12,000 years. Though the practices have been refined over millennia, modern farmers would still recognize the intent and the activity as ‘farming.’ We can find examples of plants we recognize as cereal grains, peas, barley, wheat, rice, and squash dating back 10,000 years. What makes this possible is that all these food plants produce seed.

Chris Thoreau, BC Seed Security Program Director at FarmFolk CityFolk, notes that seed is also the most efficient way to move food. “Growing seed allows you to ship food in its simplest form,” he says. “Moving lettuce seed across the border is different from moving lettuce across the border. Many of BC’s seed companies are already doing this through online sales.”

Thoreau started farming in 2001 knowing very little about seed. “My introduction to farming was the small scale organic vegetable production that is very prevalent on Southern Vancouver Island,” he says. “Which is also how I got introduced to seeds. It really was by default. There was a lot of local seed production happening in the region. We still had a good dozen seed companies in BC. Seedy Saturdays had been around for 20 years so it was a very active community.”

Rows of seedlings in a field with labels
BC Seed Trials. Credit: Chris Thoreau

In 2006 Thoreau worked on a survey of organic growers to get a sense of what seeds they were buying and from whom. He observed that “growers sourced their seed from places you’d expect like Johnny’s and High Mowing but were also sourcing from some local seed companies like Salt Spring Seeds and Stellar Seeds.”

Thoreau returned to Vancouver to study Agroecology at UBC. Still wanting to grow food while at university, he started Food Pedalers, a microgreens operation in East Vancouver. “It was very paradoxical to be attending the agroecology program but leaving the farm to do that,” he recalls. “I thought growing microgreens was the only way to make enough money for a viable urban farming business in Vancouver. The return per square foot from micro-greens was much higher than any ground crop I could grow. We were doing about 10,000 pounds of microgreens a year. During that time we were buying seed by the pallet load. I draw a lot from my time growing microgreens to help inform my seed work now.”

Thoreau joined FarmFolk CityFolk in 2015 to coordinate the Bauta Family Initiative on Canadian Seed Security (BFICSS). He’s extended his interest in seed production and education, coordinating seed workshops, public events and seed trials throughout BC. The BFICSS project is focusing on locally adapted organic seed to meet the needs of organic farmers. Thoreau notes that “seed optimized for organic production must be bred and produced in organic systems.”

Chris Thoreau and Shauna MacKinnon from FarmFolk CityFolk, and Alex Lyon from UBC, inspect a golden beet seed crop at Local Harvest Market in Chilliwack (2016). Credit: Michael Marrapese

Today, a vast array of seeds are owned, patented, and marketed by a few large corporations. With less than two percent of our population actively farming, our connection to seed and its critical role in our lives is increasingly tenuous. Thoreau points out that seed can play many roles. “Seed production can be a profession or a community building activity or even a therapeutic activity. All are quite different. Small-scale seed growers in BC have great community reach, a pretty good diversity of seeds, but what they don’t have is bulk seeds to sell to farmers.” When he first started farming most of the local seed companies were just doing packet sales. Packets were fine if a farmer was interested in trying a new variety. If they wanted to do a couple of thousand row feet of something, no BC seed grower could accommodate that. “And that is still very much the case today,” he notes.

With a predominately corporate controlled seed system, there are many issues that undermine our food security. Chief among them are irregular seed availability and degraded biodiversity. A century ago farmers may have grown as many as 80,000 different plant species. As more seed is controlled by a few large corporations, the bulk of our food comes from only about 150 different crops. Corporate ownership, patenting, and gene licensing limit the genetic diversity available to farmers. Any biologist will tell you that this is a perilous enterprise.


Chris Thoreau and Shauna MacKinnon from FarmFolk CityFolk, and Alex Lyon from UBC, inspect a golden beet seed crop at Local Harvest Market in Chilliwack (2016). Credit: Michael Marrapese

Farmers are often at the mercy of big seed producers who may be growing for large commercial markets. Specific varieties regularly disappear from catalogues. “That’s one of the reasons people start growing seed themselves,” Thoreau observes. “If they want to have a particular seed that works well in their environment and their operation, the only reliable way to do that is to grow it themselves. A big benefit to this is that evolving a seed crop on your farm year after year, you are going to come up with a new variety uniquely suited to your environment.”

One of the goals of the BFICSS program is to get more BC farmers growing and saving seed, to scale up production in the region, not only for themselves but to share, trade, and sell to other farmers. This process will ensure the genetic diversity and adaptability of seed in our region.

But there are political issues that hinder a regional and more diverse seed economy. Not all seed is available or appropriate to grow for sale. Hybrid seeds do not breed true; the next generation of plants will have a lot of off-types. Many seeds have plant variety protections on them which means farmers can’t grow and market them. Thoreau notes that this actually encourages seed breeding. “In fairness, if I spend ten years developing and growing ‘Chris’s Super Sweet Carrot’ and I start selling it, I do need to recoup the cost of breeding that seed.” Genetically modified (GM) seeds are generally licensed; farmers never actually own that seed so they can’t use it for seed saving. Most BC seed growers are growing heirloom varieties or rare varieties that aren’t protected by intellectual property laws.

Graceful carrot seed umbel. Credit: Chris Thoreau

Thoreau believes there are enormous possibilities for more seed production in BC. Oregon and Washington State are major global seed producers for crops like beets, carrots, spinach, and a lot of the brassicas. Southwestern British Columbia has similar climate conditions so he sees potential for some of that sector to be developed here. He also believes there is an enormous opportunity to produce more organic seed.

Growing trays of microgreens taught Thoreau the most important lesson about seed. Doing a hundred crop cycles a year, he began to notice differences in how temperature, watering, and daylight hours affected the plants. However, he notes that the biggest determining factor is seed quality. He’s convinced that “you cannot override the poor quality of the seed with good growing practices.”

bcseeds.org


Michael Marrapese is the IT and Communications Manager at FarmFolk CityFolk. He lives and works at Fraser Common Farm Cooperative, one of BC’s longest running cooperative farms, and is an avid photographer, singer and cook.

Feature image: Karma Peppers. Credit: Chris Thoreau

Meat from Here

in Fall 2018/Grow Organic/Livestock/Organic Community

Challenges to Localizing Meat Production

Tristan Banwell

Consider for a moment the complexities of the industrial meat supply chain. Livestock could be born on one farm, sold and moved to another location for finishing, trucked to yet another premises for slaughter. The carcass will be butchered and processed at a different location, and sold at another (or many others), and could be sold and reprocessed multiple times before it ends up on a customer’s plate. The farm, feedlot, abattoir, and processing facility could be in different provinces, or they could be in different countries. It is a certainty that some of the meat imported to Canada comes from livestock that were born in Canada and exported for finishing and/or slaughter before finding their way back to a plate closer to home.

A 2005 study in Waterloo, Ontario(1) noted that beef consumed in the region racked up an average of 5,770 kilometres travelled, with most coming from Colorado, Kansas, Australia, New Zealand, and Nebraska. The author concluded that imported beef products averaged 667 times the greenhouse gas (GHG) emissions of local beef, and the emissions were at the top of the chart among foods studied. Meat production is low-hanging fruit for reducing pollution and improving the environmental footprint of agriculture, and not just through reducing transportation. Implementation of managed grazing and silvopasture ranked #19 and #9 respectively in terms of their potential impact on climate by Project Drawdown, in the same neighbourhood as other exciting forestry and agricultural innovations, family planning, and renewable energy projects.(2) Organic methods further reduce negative externalities by nearly eliminating inputs such as antibiotics and pesticides, which are used heavily in conventional settings.

Much of the agricultural land in our province is also well suited to livestock according to the Land Capability Classification for Agriculture in BC. In fact, 44% of BC’s ALR lands are categorized in Class 5 & 6, meaning the soil and climate make them suitable primarily for perennial forage production. Looking beyond the ALR boundaries, 76% of all classified arable land in BC is in Class 5 & 6.(3) Of course, there is land in Class 4 and better that could also be best suited to livestock production, and livestock can be beneficially integrated into other types of crop and orchard systems. As farmland prices spiral higher, aspiring farmers could be looking further down this classification system for their affordable opportunity to farm. Livestock production and direct marketing meats can be an attractive enterprise for a new entrant, especially given the exciting opportunities for regenerative organic methods and an increasingly engaged and supportive customer base.

Unfortunately, there are numerous challenges facing both new and established small-scale meat producers in their efforts to implement improved methods and supply local markets. The cost-slashing benefits of economies of scale in livestock enterprises are staggering, and even the leanest, most efficient small livestock enterprise will incur disproportionately high production costs. Sources of breeding stock, feeder stock, chicks, and other outsourced portions of the life cycle chain can be distant, and finding appropriate genetics for a pasture based or grass finishing operation can be next to impossible. Given the geographic fragmentation of the province, managing the logistics of other inputs like feed, minerals, equipment, and supplies can be a Sisyphean task.

The regulations around raising livestock, traceability, slaughter, butchery, and meat processing are complex and span from the federal level (Canadian Food Inspection Agency, Canadian Cattle Identification Agency, Canadian Pork Council) through provincial bodies (BC Ministry of Agriculture Food Safety & Inspection Branch, Ministry of Health, supply management marketing boards), regional groups (regional health authorities, regional district governments) and right down to municipal government bylaws. The tables are definitely tipped in favour of large-scale commodity producers, who have the scale to hire consultants and meet more expensive requirements, and who are beholden to regulators for only one product or species. For a small scale diversified livestock operation, compliance becomes expensive and time consuming as a producer navigates the rules, requirements, and permits for multiple species.

Should a farmer manage to jump some hurdles and establish an enterprise in compliance with regulations, they may find that their growth is capped not by the capacity of their land base or even their markets, but rather by regulatory factors and supply chain limitations. There are particularly low annual production limits in supply-managed poultry categories—2000 broilers, 300 turkeys, 400 layers per year—and that is after applying as a quota-exempt small-lot producer. There is currently no path to becoming a quota holder for small pastured poultry operations. The sole quota-holding pastured poultry producer in BC is currently under threat from the BC Chicken Marketing Board, which requires a set production per six week cycle year round, rather than the seasonal production necessitated by outdoor poultry systems. The BC Hog Marketing Scheme allows a more generous 300 pigs finished per year, and there is no production regulation for beef cattle nor for other species like ducks, sheep, and goats.

Regardless of what livestock species a farmer raises, eventually they must go to market. For most commodity cow-calf operations and some other livestock enterprises, this can mean selling livestock through an auction such as the BC Livestock Producers Cooperative. However, many small scale producers prefer to maintain control of their livestock, finishing them on the farm, arranging for slaughter, and wholesaling or direct marketing the meat. This can help a farm retain more of the final sales price, but adds another layer of complexity around slaughter and butchering, as well as storage, marketing, and distribution.

In BC, there are five classes of licensed abattoirs in operation, including 13 federally-inspected plants, 63 provincially-inspected facilities (Class A & B), and 66 licensed Rural Slaughter Establishments (Class D & E).(4) Federally inspected plants are under jurisdiction of the CFIA and produce meat that can be sold across provincial and international borders. The two classes of provincially licenced plants include inspected and non-inspected facilities. Class A and B facilities are administered by the Ministry of Agriculture Meat Inspection Program, have a government inspector present for slaughter, and are able to slaughter an unlimited number of animals for unrestricted sale within BC. Class A facilities can cut and wrap meat, whereas Class B facilities are slaughter-only with no cut/wrap capacity.

Class D and E slaughter facilities, also known as Rural Slaughter Establishments, are able to slaughter a limited number of animals per year without an inspector present after completing some training, submitting water samples and food safety plans, and having the facility inspected by a regional health authority. A Class D facility is limited to 25,000 lbs live weight per year, can slaughter their own or other farms’ animals, and can sell within their regional district only, including to processors and retailers for resale. This class of licence is limited to 10 regional districts that are underserved by Class A and B facilities. Class E licenses are available throughout the province at the discretion of Environmental Health Officers. This type of licence allows slaughter of up to 10,000 lbs live weight of animals from the licensed farm only, and allows direct to consumer sales within the regional district, but not for further processing or resale.

Despite multiple options for abattoir licensing, small farms are underserved and slaughter capacity is currently lacking in BC. Running an abattoir is a difficult business, with significant overhead costs and strong seasonality, and there is a shortage of qualified staff in most areas of the province. On-farm slaughter options may sound appealing, but the costs associated and low limits on the number of animals per year make small on-farm facilities a difficult proposition. Producers will find it difficult or impossible to have their livestock slaughtered throughout the fall, which is busy season for abattoirs for exactly the reasons producers need their services at that time. Some poultry processors are beginning to set batch minimums above the small lot authorization numbers to eliminate the hassle of servicing small scale producers.

Clearly, improvements can be made to increase the viability of local and regional meat production in BC. This year, meat producers throughout the province came together to form the Small-Scale Meat Producers Association (SSMPA) with an aim toward creating a network to share resources and to speak with a common voice to move systems forward in support of producers raising meat outside of the conventional industrial system.

The BC provincial government has reconvened the Select Standing Committee on Agriculture, Fish & Food, and the first task of this group is to make recommendations on local meat production capacity.(5) The SSMPA has been active in these discussions, as well as earlier consultations regarding Rural Slaughter Establishments, and looks forward to encouraging a more localized, place-based meat supply in BC.

To learn more or join in the discussion, visit smallscalemeat.ca or facebook.com/smallscalemeat.

To reach the Small-Scale Meat Producers Association (SSMPA), get in touch at smallscalemeat@gmail.com.


Tristan Banwell is a founding director of both the BC Small-Scale Meat Producers Association and the Lillooet Agriculture & Food Society, and represents NOOA on the COABC Board. In his spare time, he manages Spray Creek Ranch in Lillooet, operating a Class D abattoir and direct marketing organic beef, pork, chicken, turkey, and eggs. farmer@spraycreek.ca

References
(1) Xuereb, Mark. (2005). Food Miles: Environmental Implications of Food Imports to Waterloo Region. Region of Waterloo Public Health. https://bit.ly/2nh4B37
(2) Project Drawdown. https://www.drawdown.org/solutions/food/managed-grazing
(3) Agricultural Land Commission. (2013). Agricultural Capability Classification in BC. https://bit.ly/2vl3SC8
(4) Government of BC. Meat Inspection & Licensing. https://bit.ly/2uIcNgJ
(5) Ministry of Agriculture. (2018). Discussion Paper prepared for the Select Standing Committee on Agriculture, Fish and Food. https://bit.ly/2J1x9Kc

An Ode to the Farmer

in 2018/Fall 2018/Grow Organic/Organic Community

Josh Brown

…It was a few days ago at around 7 am when the sun peered over Fairview Mountain to kindly balance a rude 40 km/h south wind. It happened while I was neurotically leaning over the hood of my van trying to pick out a slightly different noise in the engine (of all things) hoping to hear something different each time, hoping to disprove Einstein’s basic philosophy of insanity. After about 20 minutes, I didn’t even know what I was looking for anymore, or if anything was even there in the first place. I’ll have to keep an eye on it. At around 8 pm later that day, the sun was falling behind K Mountain, finally offering slight relief from a 30 degree (spring!?) day. The wind soothed new sun burns and the cooling soil felt nice in my hands. It happened when I went to check the water and gopher traps in the apple tree nursery and garlic crop. My new low emitter overhead sprinklers are a head scratcher right now as I try to develop a schedule with the new irrigation system. And after opening up a fallow field for the expansion of the nursery, gopher trapping has been relentless…

This all started with a fallow field, for most of us here. As someone who is still very close to that moment, I can speak to what it’s been like to take that leap, and how special it has been to share the experience with likeminded people doing the same thing. I own a small-scale organic tree nursery in Cawston, a village nestled in the Similkameen Valley, and just outside the industrial fortitude of the Okanagan. Over the last 10 years farming for others, as well as investing in my own project here, this community has come alive in a most remarkable way, through compounded experiences with people who share a passion for designing a good life, and by people who quite literally design as a profession. This is an attempt to understand the mechanism by which I and likely many other organic farmers ended up living here and doing something we truly find meaningful, and why we stayed.

Perhaps if we stop and smell the roses a little more, we may be able to break pattern and follow a different path. That this narrative is like a little red thread that weaves its way, inductively, moment to moment, rose to rose, through disjointed chaos, and that we can surprise ourselves with how far we can actually go. There are moments we cherish, whose substantive merit eludes us less that moment in time when we stopped to notice it. But I’m beginning to think those moments do not drift far. The first time opening up a piece of land like a blank canvas and feeling liberated by it. An evening with close friends whose intimacy is built on innumerable shared experiences over years, and feeling at home. Trying to erect multiple freestanding cold frame tunnels in the middle of a field in the windiest place on earth, and through constant repair and correction realizing how passionate and focused you are.

These moments and their respective rewards are fleeting, though they help us refine exactly what we are seeking and what feeds us, and over time they define and become us. I’m beginning to think that we don’t actually make many long winded choices—you know, the big ones: where to live, who to love, who we are. Rather, if we slightly untether ourselves from those plans and expectations that we can gear toward so eagerly, and give ourselves the freedom to take notice to the moments we are in from time to time, letting them inspire us to deviate course a little, we may find ourselves doing something we truly find meaningful. And that is how I would describe the process of somehow starting out in Toronto 10 years ago, running a scooter business and living downtown, to now finding myself farming in the Similkameen.

This is not just my story. I live in a community whose members’ stories have grown, and continue to grow, unrestrained by fear of discomfort or by doing things differently. This is a sentiment I feel often, and is confirmed by the reaction I get from people who come here and experience the work in the fields, and who may have had the opportunity to join us at one of our potlucks, filled with fresh ingredients cooked by the local farmers whose hard work that day grew them.

There is something that happens when all the farmers get together here, where friendship, profession, and community are indistinguishable. Sometimes I feel that we have replaced a few of our older patterns, some of which did not feel organic, with others that do—for example, the nature of the work/life balance here, as well as the nature of the work itself.

…It was a few days ago at around 2 pm, around the time when the heat of the day can make you irritable, that I needed to borrow a T-post pounder to build a deer fence for the nursery. The heat we have been getting so early in the year had pushed the buds from my newly grafted trees a lot quicker than I was expecting, and so I really needed to build that fence before all the new growth was a fawn’s snack. Emilie Thoueille, who runs an extraordinary small scale organic market garden down the road from me, had one so I stopped in to pick it up. She invited me in for a coffee in the shade of her tiny home container conversion that she built herself. My roommate, David Arthur, who also runs a small organic market garden on a shared lease with me, was over helping build a cooler out of another converted container, which they will be sharing to store their veggies. Our mutual neighbours across the road, Paul and Lauren, who have been unbelievably helpful over the years to all three of us, stopped in to say hi as well. Community is quite literally woven into the fabric of our lives and careers here, and I believe we farm to feed it. The deer fence could wait 15 minutes, because this was a special moment in the shade…

Life here really is quite unbelievable, and my goal and that of so many other farmers I know is really just to be able to keep doing this. I recall a conversation I was recently having with Corey Brown from Blackbird Organics, a friend and mentor, about this valley and what makes life and farming in this small town so unique. He was describing how “we are essentially a community of entrepreneurs.”

And yet our homes and communities are a little more entangled into the mix of business and pleasure, so it is all being designed to work harmoniously. This is where the work/life balance disintegrates, when your work is your home as well, and your local economy is also your community.

“It returns to something that actually feels more comfortable and natural, yet needs to be relearned,” added Melissa Marr at Vialo Orchards, owner of one of the oldest organic orchards in the area. That level of interdependence, ownership, and accountability is pervasive, and it shows in the quality of the product and lifestyle experienced here.

In some ways I feel that what we are doing here in Cawston builds on an experience as old as time. That from rose to rose, moment to moment, we have come to find ourselves farming here. Though as off the beaten path as it has felt for some of us, it has in many ways reconnected us to a personal and social archetype, a self and a community, whose fire has been burning for a long time, and which feels more honest, organic, and sustainable.

I still see it in the passion and pride held by those who found themselves in a similar moment to the one I’m experiencing years ago, in the generation before us. Farmers whose wisdom in both how to farm, and how to be, have been tantamount to our success, and the continuation of this movement, just as we hope to be for those who we will have the privilege of sharing this with in the future. These are farmers whose passion and story are cellared in the true nature of this lifestyle, in both its romance and its hardship. Those who have been here long enough to experience crop successes and failure, the strength to work 12 hours a day in 30 degree heat as well as those who have sustained togetherness, and union in the community, as well as prohibitive injury, fragmentation, and loneliness, the perfect apple year followed by a flooded orchard the next. Someone so in tune with those cycles, that they almost become predictable, thus inhabiting a trust in its continued ability to provide.

As a matter of fact, sometimes I think the hard work and resilience of the organic farmers I know in Cawston would stand to bear that the pain is manageable when compared to the reward, and the rewards are unquestionably rich.


Josh Brown owns and operates Joshua’s Trees, a certified organic tree fruit nursery in Cawston, BC, where he grows trees for orchardists as well as the retail hobbyist and backyard market. joshuastrees.organics@gmail.com

Photos by Sara Dent | farmlove.org

Growing the Local Food Economy in the North Okanagan

in 2018/Fall 2018/Farmers' Markets/Grow Organic/Marketing/Organic Community

Eva-Lena Lang

Growing up on a family farm in the Mabel Lake Valley, in the North Okanagan, I experienced the many rewards and challenges that farmers can face. I left the region for several years, but whenever I returned for visits, I would notice new struggles confronting the farming community. Certain challenges stand out in my memory: the BSE or “mad cow disease” crisis in 2003, BC’s enactment of the new Meat Inspection Regulation, which came into effect in 2007, other policy and regulation issues, the impact of droughts and wildfires, and more.

I moved back to the North Okanagan in 2015 to work with COABC, with the hope of returning to farming as well as putting roots back down in the wider community. I became concerned about the long term health and sustainability of our communities, which have become increasingly disconnected from their farmers. I believed there was a need to rebuild the relationships between not only the farmers and their communities, but between all the different components of the regional food system: from farmers, to processors, distributors, retailers, chefs, and ultimately, consumers.

In 2015 I was taking a course in a community economic development (CED) program through SFU. I had learned about the concept of collective impact: “the commitment of a group of actors from different sectors to a common agenda for solving a specific social problem.” Collective impact follows five conditions: providing backbone support, facilitating communication, identifying a common agenda, embarking upon mutually reinforcing activities, and monitoring success (Kania & Kramer, 2011).

I also learned about the Farm to Plate (F2P) Network in Vermont, which has been one of the most impressive examples of how to successfully apply the collective impact approach to make a “viable, sustainable, and resilient food system.” The Vermont F2P Network is an inspiring example of how a collective impact network has transformed Vermont’s food system, resulting in significant improvements over 10 years (2003-2013). Notable improvements include doubling local food production, increasing local food jobs by 10% and businesses by 15%, halting land loss in agriculture, and improving access to healthy food for all Vermonters.

Gathering around a kitchen table, a few community members and I, all food systems experts as well as from farming families in the region, discussed the Vermont F2P Network for one of my CED projects. We ended the discussion with the decision that it could, and should, happen in the North Okanagan.

In November 2016 we convened a meeting of 15 key North Okanagan food system stakeholders, to discuss the potential and explore the interest for building the region’s food system through collective impact. Recommendations from the November meeting led to the following actions in 2017:

  • We formed a working committee, under the guidance of the above stakeholders
  • We selected Community Futures as our host organization
  • We created a background report compiling and summarizing the recommendations of agriculture, food system, and food security plans that have been generated in the region over the past 10 years. This report was completed in December 2017 and was useful in planning a forum the following year.
  • We hosted a forum in January of 2018, titled “Growing the Local Food Economy in the North Okanagan”.

The forum began with our keynote speaker, Curtis Ogden of the Interaction Institute for Social Change in Boston, USA, presenting his work on regional food systems in Northwestern USA, including on the VF2PN. In particular, Curtis talked about the importance of working through networks, building authentic connection and increasing capacity, leading to increased strengths. Networks are beneficial as they produce outcomes through collaboration that organizations may not produce on their own.

The forum was attended by 85 participants, including the direct food system stakeholders, as well as supporting members from government, non-profit, and academic organizations. We presented the opportunities, challenges and recommended actions from the background report and used this as the basis for discussion in the forum working groups (i.e. Sustain Farmers, Support Processors, Develop the Middle, Engage Consumers, and Build the Network). Through conversations, each working group determined their priorities for short, medium, and long term actions focused on growing the local food economy.

The conversations at the forum were incredibly important and filled with great ideas for action. It was becoming apparent to us, however, that the best way to make these actions happen was through the development of a well connected, aligned, and coordinated network in the North Okanagan, operating through a collective impact approach. Since the forum, we have continued to ride the momentum, working on two parallel efforts: 1. Following up on the priority actions determined at the forum, and 2. Building a collective impact network across the food system, called the North Okanagan Food System Initiative (NOFSI) Network.

The interim vision of NOFSI is a regional food system where farmland is protected and productive, farmers have access to land, regional farms and other food system enterprises are thriving, our food system is environmentally sustainable and resilient to climate change, more local food is produced and sold, and everyone has access to healthy good food. The goal of the North Okanagan Food System Initiative is to develop a collective impact network to achieve this vision.

NOFSI consists of a steering committee, a newly hired coordinator, and a network of food system stakeholders. Community Futures North Okanagan (CFNO) continues to act as our host organization. Currently, steering committee members represent key partner organizations such as Interior Health (IH), BC Ministry of Agriculture, University of British Columbia, Okanagan campus (UBCO), Food Action Society North Okanagan (FASNO), and the Regional District of North Okanagan (RDNO).

In May and June 2018, Liz Blakeway, the NOFSI coordinator, convened four working group meetings to follow up on the priority actions identified at the January forum. In the second half of these meetings, I facilitated a network mapping exercise to depict the current state of food system network in the North Okanagan. I also convened an overarching working group (the former Build the Network working group from the forum) to map, analyze, and make recommendations for building the NOFSI network. This work is a part of my Masters research at the University of British Columbia Okanagan, working closely with supervisors Mary Stockdale and Jon Corbett as well as other expert advisors from the community.

  1. The information obtained from this research and the priority actions identified at the follow up meetings will inform our transition to the next phase of our initiative. Starting in September, and with funding from the Real Estate Foundation as well as the Regional District of the North Okanagan, NOFSI will be working on:
    • Organizing annual forums and completing follow-up actions that focus on the following themes:
      Growing the local food economy (this is underway, beginning at the January 2018 forum);
    • Promoting environmental sustainability across the food system (to begin at the planned January 2019 forum); and
    • Securing access to healthy local food (anticipated to begin at a January 2020 forum).
  2. Building a network that functions to support and facilitate setting a shared agenda, initiates constructive communication, coordinates and supports working groups, and creates an environment that builds trust, alignment, and the ability to collaborate effectively.

During the first study group meeting in 2015, I discovered that there are other people in the North Okanagan who share my values and my understanding of what needs to be done to support a stronger regional food system. The conversation has continued, and it has been incredibly inspiring to see more and more passionate individuals became involved, building the momentum to implement this idea.

Each NOFSI member has their own story and reason as to why they want to see change. Many individuals who recognize the strong potential for profitable, diversified agricultural production in the North Okanagan, also want to support sustainable agriculture, the successful entrance of young farmers, and improved access to healthy local food for all our citizens. The success to date has been due to the commitment of members actively engaging in the network and a few very committed individuals putting countless hours of work into the development of NOFSI.

My study circle conversation in 2015 was a small way to try to make change happen, but it was a start. Inspired by Vermont’s story, I continue to believe that we can make collective impact happen here, with the “collective” being our NOFSI network, and the “impact,” a regional food system that is economically prosperous, environmentally sustainable, and socially accessible to all.


Eva-Lena Lang grew up on a family farm, and has farmed all around the world. She is currently pursuing a Masters at UBCO to further her capacity to support the regional food system and small-scale farmers. Before starting her Master’s, she worked with the Certified Organic Associations of BC.  

Photos by Maylies Lang.

Footnotes from the Field: Intergenerational Soil Stewardship

in Fall 2018/Footnotes from the Field/Grow Organic/Land Stewardship/Organic Standards/Tools & Techniques
Onions by Moss Dance at Birds and Beans

Intergenerational Soil Stewardship: Our Only Hope?

Marjorie Harris BSc, IOIA V.O. P.Ag

Soil, specifically topsoil, is the foundation of life on this earth. Earth is the only planet with healthy fertile soil on it that we know of yet, in the whole of the universe. Fertile soil is a little-understood mixture of biology and geology whose potential only exists in the topsoil layer. The topsoil layer is composed of the topsoil itself and organic matter in various stages of mineralization and humus production. Degradation and erosion of the topsoil depletes soil fertility, restricting plant growth, vitality, and micronutrient content.

The theme for this month’s BC Organic Grower is: “Bioregionalism: building place based economies.” Agricultural philosopher Wendell Berry suggests that an agrarian economy is based on local adaptation of economic activity to the capacity of the land to sustain such activity.

This is a challenging idea because history shows us that farming as practised in the past and the present always causes topsoil degradation. Through the ages, soil degradation, or erosion, has steered the fate and course of human civilizations and ultimately caused the demise of those civilizations. This story has repeated itself throughout the world and in the history of every type of farming. In the words of Sir Winston Churchill, “Those who fail to learn from history are doomed to repeat it.” No greater historical comment can be made for agriculture: learn or be doomed. All farming societies exhausted their topsoils within 800 to 1700 years.

The Canadian Organic Standards speak to soil conservation and soil fertility specifically in the following sections:
The general principles of organic production in Annex 1:
1. Protect the environment, minimize soil degradation and erosion, decrease pollution, optimize biological productivity, and promote a sound state of health.
2. Maintain long-term soil fertility by optimizing conditions for biological activity within the soil.

Clause 5.4.3 Tillage and cultivation practices shall maintain or improve the physical, chemical and biological condition of soil, and minimize damage to the structure and tilth of soil, and soil erosion.

Principle of Health

Organic agriculture should sustain and enhance the health of soil, plants, animals, humans and the planet as one and indivisible.

We have run out of new lands to discover on planet Earth. In 1995, Dr. David Pimental of Cornell University calculated that we had already lost 30% of the arable land we were farming to soil erosion. With the advent of chemical and mechanical agriculture the soil erosion problem has increased a hundred-fold in areas. As an example, in the past 150 years, one-half the fertile topsoil of Iowa has been lost to erosion.

Topsoil is a strategic and underappreciated resource. Soil can be conserved, made, and lost and it is the balance of these factors that determines the soils fertility. How we manage the soil resource in our generation will affect generations to come. As long as soil erosion continues to exceed soil production, it is only a matter of time before agriculture fails to support Earths humanity.

What Can We Learn from the Trials and Errors of Our Ancestors?

Çatalhöyük, Anatolia (modern Turkey) was home to a Neolithic farming civilization that lasted around a thousand years starting about 7500 BC. Scientists have studied skeletal remains which have provided a highly informative record of human health. From the skeletal health record they have been able to divide this civilization into three distinct health time periods: Early, Middle and Late. During the Middle period the civilization reached its peak in population and health, and then as soil fertility was depleted the human skeletal health parameters demonstrated decline. By the end of the Late period 52% of human births resulted in infant mortality before the age of two months. Similar skeletal health studies have been conducted on the remains of other farming civilizations globally with outcome of human health declining in parallel with topsoil and soil fertility depletion, supporting the assumption that human health is interdependent on topsoil retention and soil fertility.

Dr. David R. Montgomery succinctly identifies the problem and a potential solution in his book Dirt: The Erosion of Civilizations: “Sustaining our collective well being requires prioritizing society’s long term interest in soil stewardship; it is an issue of fundamental importance to our civilization. We simply cannot afford to view agriculture as just another business because the economic benefits of soil conservation can be harvested only after decades of stewardship, and the cost of soil abuse is borne by all.”

What Does a New Sustainable Agriculture Ethic Require from Us?

In Dr. David Montgomery’s more recent publication “Growing a Revolution: Bringing Our Soil Back to Life,” he outlines solutions to soil conservation and topsoil rebuilding techniques he has witnessed applied in the field around the world. He identifies the main culprit of soil erosion in agriculture as the invention of the plow. The plow breaks the soil structure and exposes the underground community of biota to the surface. “The plow is the villain that set the seeds for soil degradation. Only deserts have bare earth and Nature tends to clothe herself in plants.”

Another challenge is that during one generation a farmer can seldom see the effects of topsoil erosion unless a dramatic natural weather event sweeps the soil away. During day to day farming it is difficult to ascertain the minimal yet additive effects of traditional tillage techniques. Fallow land tillage is a traditional technique that leads to desertification and needs to be abandoned and replaced with topsoil preserving methods. Topsoil conservation and rebuilding requires the focused consciousness of Intergenerational Soil Stewardship to guide agricultural sustainability.

Soil is in a Symbiotic Living Relationship with Plants

When plants are actively photosynthesizing they release 30% to 40% of the sugars, carbon compounds, and proteins they manufacture through their roots into the root rhizosphere. The root exudes these nutrients to feed the underground community of fungi and microbes in exchange for micronutrients from fungi and microbial metabolites that act as growth stimulators and plant health promoters.

When plants are fed synthetic N, P, K they grow big on top of the ground but do not invest in growing a big root system and do not deliver as much nutritious root exudates to feed the underground microbial and fungi communities. As a result the plant does not reap the benefits of vitality factors and micronutrients. The plants overall health is less and the plant tissue has demonstratively less micronutrient content to pass on up the food chain. Micronutrient studies demonstrate that under conventional agriculture the plants have lost between 25% to 50% of their micronutrient content in the past 50 years.

The solution to successful topsoil building Dr. Montgomery observed while touring farms around the world required three things to happen at once: no till planting techniques, cover cropping, and adding organic matter to the soil. Dr. Montgomery has coined the method Conservation Agriculture and the methods can be applied in both conventional and organic farms—because when it comes to soil conservation and restoration, everybody needs to get on board.

Principles of Conservation Agriculture:

1. Minimal or no disturbance/direct planting of seeds (e.g., no till)
2. Permanent ground cover: retain crop residues and include cover crop in rotations
3. Diverse crop rotations: to maintain soil fertility and break up pathogen carryover
4. Livestock assisting in topsoil building: mimic bison grazing, move cattle in a tight herd to intensive graze (high disturbance), and move frequently to produce low frequency grazing.

Benefits of Conservation Agriculture, after a short transition period of 2 to 3 years to allow soil organic matter to build fertility:

1. Comparable or increased yields
2. Greatly reduced fossil fuel and pesticide use
3. Increased soil carbon and crop resilience
4. Higher farmer profits

“This is not a question of low tech organic versus GMO & agro-tech….this is about ‘how to apply an understanding of soil ecology to the applied problem of increasing and sustaining crop yields in a post-oil environment’.”

“Agriculture has experienced several revolutions in historical times: the yeoman’s revolution based on relearning Roman soil husbandry and the agrochemical and green revolutions based on fertilizer and agrotechnology. Today, the growing adoption of no-till and organic methods is fostering a modern agrarian revolution based on soil conservation. Whereas past agricultural revolutions focused on increasing crop yields, the ongoing one needs to sustain them to ensure the continuity of our modern global civilization. The philosophical basis of the new agriculture lies in treating soil as a locally adapted biological system rather than a chemical system.”

Intergenerational Soil Stewardship: Society on a global scale based on an agrarian economy adapted to its bioregion dedicated to topsoil conservation and restoration and the development of soil fertility.


Marjorie Harris is an organophyte, agrologist, consultant, and verification officer in BC. She offers organic nutrient consulting and verification services supporting natural systems.

References:
1. Montgomery, D. (2007). Dirt: The Erosion of Civilizations. University of California Press. Montgomery, D. (2017). Growing a Revolution: Bringing Our Soil Back to Life. W. W. Norton & Company.
3. Pimental, D., Burgess, M. (2013). Soil Erosion Threatens Food Production. Agriculture, 3(3), 443-463; doi: 10.3390/agriculture3030443
4. Montgomery, D. (2014). Soil erosion and agricultural sustainability. PNAS. 104 (33) 13268-13272; https://doi.org/10.1073/pnas.0611508104

Weeds: Don’t Shoot the Messenger

in 2018/Crop Production/Grow Organic/Land Stewardship/Organic Standards/Pest Management/Summer 2018

(Not Until You Understand the Message)

Av Sing

This article first appeared in The Canadian Organic Grower, with thanks.

All too often when farmers start talking weeds, a common first question is “How do I get rid of a bad case of…?” when a more appropriate question is “I wonder why my field has a bad case of…?”

The subtle difference in the above question requires a surprisingly dramatic paradigm shift in your view of weeds. Weeds must shed their role as problems, pests, and sources of frustration, and instead take on the role of symptoms, storytellers, and healers. Weed advocates consider weeds as plants with a mission and look to learn what the weeds can tell us about our soil conditions (e.g. pH, drainage, compaction, etc.) or our management practices (e.g. crop rotation, row spacing, stocking rate, tillage, etc.).

Weeds Redefined

Nicolas Lampkin, in Organic Farming, stresses that it is the human activity of agriculture that generates weeds. He defines a weed as “any plant adapted to man-made habitats and interferes with human activities.” For weed spin doctors, even that definition is too harsh because it focuses too much on the negative. The first step in our weed propaganda is to begin viewing the appearance of weeds as beneficial.

We are all familiar with the saying nature abhors a vacuum. Well, cultivation essentially creates a vacuum where whole communities of plant and soil life are disrupted and/or destroyed. Nature responds with weeds. Within days, pioneer plants such as pigweed, lamb’s quarters, and purslane grow rapidly and thickly. They anchor the soil and generate organic matter that feeds the soil life. These fast-growing annuals also provide shade, hold moisture, and moderate soil temperatures that allow other plants, such as biennials and perennials (including grasses), to initiate growth. If left for another season, this land will have fewer fast-growing annuals and favour later successional plants.

In our fields, the soil is in an unnatural state of continuous disturbance and as a result we primarily deal with the early colonists. Most of these fast-growing annuals grow without associated mycorrhizal fungi (primarily because their life cycle is too short to benefit from a symbiotic partnership). Expectedly, soils rich with mycorrhizal fungi (e.g. pastures, forest floors, agricultural soils rich in organic matter, especially through the use of compost) have fewer annual weeds. Elaine Ingham of Soil Foodweb Inc. suggests that the presence of the fungi serves as a signal that keeps annual weeds from germinating.

Learning From Your Weeds

Now that we better appreciate why weeds appear in our farms and gardens, we can take a closer look at how we can use weeds as indicators for our soil conditions. It is important to note that many weeds can tolerate a wide range of conditions and therefore the appearance of a few individual weeds are not necessarily proof of an underlying soil condition. For example, both perennial sow thistle and dock indicate poor drainage, but dock prefers more acidic soils, while thistle favours a higher pH. You can however learn about the conditions if the weed population is dominated by several species that all prefer similar conditions. For example, if plantain, coltsfoot and ox-eye daisies are the predominant weeds, this could indicate that the soils are waterlogged or have poor drainage.

Agricultural practices such as cultivation, fertilization and grazing management can have a great impact on the soil and, in turn, on the appearance of particular weed species. Frequent tillage will disturb the billions of viable seeds in the soil seed bank and, with sunlight, these will germinate and occupy bare soil. Weeds such as lamb’s quarters and redroot pigweed can produce 75,000 to 130,000 seeds per plant (respectively), which can remain viable in the soil for up to 40 years.

The presence of legumes, such as vetch, medic and clover, may suggest that the soil is lacking nitrogen. In contrast, weeds growing on the same soil that appear pale yellow and/or stunted also indicate low fertility. Overgrazing of pastures may lead to compacted soils and then the presence of perennial bluegrass species and bentgrasses may predominate.

The lack or imbalance of calcium can allow soils to become compacted and without the proper biology in the soil (fungi in the case of calcium), calcium will not stay in the soil.

Soil pH

In addition to helping protect and improve the organic matter content of the soil, weeds can also indicate the acidity or alkalinity of the soil. Most agricultural crops do best in a slightly acidic soil (pH of 6 to 6.5). An increasing presence of weeds such as plantain, sorrel or dandelion may suggest that the pH is dropping below a desirable level. However, having acidic soils should not be viewed as detrimental. Much of Albrecht’s work highlighted that poor plant performance on low pH soils was in fact a consequence of low soil fertility or an imbalance of soil nutrients, rather than soil pH. For example, many alfalfa growers have witnessed a dramatic invasion of dandelions after spreading high levels of potash. Essentially, the potash had suppressed calcium levels in the soil. The deep-rooted dandelion scavenges calcium from lower depths and upon its death released the calcium at the soil surface. The appearance of dandelions may be interpreted as indicating acidic soils when in fact the ratio of calcium to potassium caused their appearance.

Extreme Weed Makeover: Look for the Positive in Weeds

  • Weeds can act as a green manure or cover crop.
  • Weeds can serve to cycle nutrients from the subsoil (e.g. deeprooted weeds such as dandelions or burdock).
  • Deep-rooted weeds can break up hard pans, thereby regulating water movement in the soil.
  • Weeds can conserve soil moisture.
  • Weeds can provide habitat for beneficial organisms.

An imbalance of magnesium relative to calcium can lead to tight soils and eventually anaerobic conditions. Calcium causes soil particles to move apart, providing good aeration and drainage; fungi help to prevent the leaching of calcium out of the soil. Magnesium makes particles stick together and if soils become too tight, oxygen becomes limited and beneficial forms of soil life disappear. In such conditions, organic residues in the soil do not decay properly, and increased carbon dioxide in the soil favours fermentation of the organic matter, resulting in byproducts such as alcohol and formaldehyde. These substances inhibit root penetration as well as create favourable conditions for soil diseases such as pythium and phytophora. Fermentation can also create methane gas which is conducive to the appearance of velvetleaf, or ethane gas which helps jimsonweed to prosper. Grasses with their fine and numerous roots attempt to break up tight soils, while the presence of many grassy weeds may indicate tight soils.

Mycorrhiza is a symbiotic association between fungi and plant roots. Most agricultural crops depend on, or benefit from, their associations with mycorrhizae. In exchange for carbon from the plant, mycorrhizal fungi make phosphorus more soluble and bring soil nutrients (N, P, K) and water to the plant. The Cruciferae family (e.g. broccoli, mustard) and the Chenopodiaceae family (e.g. lamb’s quarters, spinach, beets) do not form associations with these fungi. Frequent tillage, fungicides and high levels of N or P will inhibit root inoculation. Similarly, the practice of fallowing will reduce levels of mycorrhizae because the plants that establish following tillage usually do not form associations with the fungi.

This article is based primarily on the knowledge and observations of farmers who wanted to better understand the connection between what was growing in their soil and the various management practices they were employing.

The American poet Emerson once wrote, “What is a weed? A plant whose virtues have not yet been discovered,” perhaps referring to their greatest virtue to farmers as messengers of the soil.

Recommended reading (available from the COG library): 

Pfeiffer, E.E. (1981). Weeds and what they tell. Biodynamic Farming and Gardening Assoc, USA.

Soil Association. (1982). The Value of Weeds. Soil Association, UK.


Av emphasizes farmer-to-farmer knowledge exchange and works to hone farmer intuition in making management decisions. Currently, Av serves as a cannabis cultivation advisor to many Licensed Producers in North America and the Chief Science Officer with Green Gorilla (a Hemp and Cannabidiol Company). Av is also serving as the Vice-President of the Canadian Organic Growers and is proud to be a member of Slow Food Canada, Food Secure Canada, and the National Farmers’ Union. Av is also a faculty member at Earth University (Navdanya) in India where he delivers courses on agroecology and organic farming. Av can be reached for questions or comment at 902-698-0454 or av@fs-cannabis.com.

SaveSave

A New Model for Integrated Habitat Development

in 2018/Crop Production/Grow Organic/Land Stewardship/Summer 2018

For Bees, Birds, and Fish (IEHD-BBF)

Saikat Kumar Basu

Global bee populations are showing an alarming decline due to a number of factors like environmental pollution, indiscriminate use and over applications of various agro-chemicals, industrial agricultural practices detrimental to nature, changes in the land use patterns, and parasitic diseases of bees as well as lack of adequate supply of nectar and pollens for different bee species due to lack of suitable of bee foraging plants and natural melliferous flora. The challenges are not just restricted to honey bees and/or native bee species, but also to other insect pollinators such as moths, butterflies, and certain species of pollinator-friendly flies and beetles. Under these circumstances it is important to conserve the endangered bee species and other pollinator insects, mollusks (snails and slugs), birds (certain humming bird species), and mammals (bats) helping in the process of natural cross pollination.

A large number of global food and industrial/commercial crops, forage crops, wildflowers, ornamentals, vegetables, and forest species are dependent on biological agents or vectors of cross pollination for their successful reproduction and survival. The yield loss due to lack of suitable pollinators for cross pollination is a serious threat to the future of global agriculture as well as for maintaining the balance of our natural ecosystems. Loss of honey bees are having detrimental socio-economic impacts on the apiculture industry; and thereby impacting the livelihood and social security of millions of individuals around the planet.

A Stratiomyid fly foraging on wild chamomile flower. Photo credit: Saikat Kumar Basu

Establishing suitable pollinator (bee) gardens or habitats or sanctuaries at suitable sites could prove to be instrumental in both bee and other pollinator insect conservation from a long term, ecological perspective. Using suitable pollinator mixes comprising of native grasses, wildflowers as well as annual, biennial, perennial forage crops (forage grasses, legumes, different Brassica family members) can help in establishing pollinator gardens, habitats, or sanctuaries in perimeters of forested areas, under used or unsuitable agronomic lands, unused and available rural locations, city and municipal parks and gardens, lawns, kitchen gardens, unused or hard to farm areas, in sites adjacent to natural or artificial waterbodies like ponds, pools, ditches, swamps, bogs, streams, or irrigation canals.

Aquatic Habitats

Freshwater wetland habitats need to be protected to conserve the aquatic ecosystems, the rich biodiversity associated with itand to protect nature for our future generations. Protecting freshwater wetlands does not necessarily require huge expertise, funding, or high levels of technology applications, but rather. simple innovation, creativity, awareness, and the desire to develop comprehensive multi-layer conservation strategy in the line of Multiple Tier Conservation Model (MTCM). A well managed and carefully planned freshwater aquatic habitat conservation strategy could be establishing Integrated Ecological Habitat Development for Bees, Birds and Fishes (IEHD-BBF). This proposed model targets multiple trophic levels within a dynamic natural or artificial freshwater ecosystem to conserve multiple species simultaneously.

Aquatic habitat integrated with pollinator conservation can provide multi level species protection for bees, birds, and fishes. Photo credit: Saikat Kumar Basu

Natural or artificial aquatic habitats like pools, ponds, ditches, swamps, bogs, lakes, canals, etc… could be targeted for ecological restoration by planting short or high grasses, salt tolerant aquatic plant species, and grasses along with pollinator mixes comprising of annual and/or perennial legumes, wildflowers, and related pollinator friendly plant species or melliferous flora around target fresh water habitats. Such mixes will not only restore aquatic habitats, but also attract small and medium sized land birds and a wide diversity of pollinator insects like honey bees, native bees, moths, butterflies, certain species of pollinator beetles, and flies for nectar foraging, nesting, and breeding purposes.

From Flora to Fauna

If the waterbodies are well stocked with indigenous fish species, well protected grassy aquatic habitats will also attract a wide diversity of aquatic birds to nest, forage, and breed in such unique environmentally restored ecosystems. An integrated Bees, Birds and Fishes Conservation Model (BBFCM) can be extremely useful in protecting multiple species at the same time and location.

Ideal pollinator foraging plants can help build sustainable pollinator sanctuaries. Photo credit: Saikat Kumar Basu

Grasses in the mixes can help in soil erosion and restoration, as well as phytoremediation, while legumes will enrich the soil with natural nitrogen resources without application of any synthetic fertilizers. Care must be taken to avoid using any pesticides in such habitats to prevent chemical pollution. Over time, such aquatic habitats will also attract local wildflowers and aquatic plants to grow and thrive in these ecosystems attractive to various species of both terrestrial and aquatic insects including active pollinators, along with small to medium sized terrestrial and aquatic birds to nest and forage in such restored aquatic habitats. Well stocked waterbodies with native fish species will promote native fish conservation and at the same time provide a stable food source for a number of aquatic birds.

Small and medium sized mammals, reptiles, and amphibians will also be able to establish in such ecosystem utilizing the growing complex food chains and food webs over time. Overall, the innovative and multi-trophic level Integrated Ecological Habitat Development for Bees, Birds and Fishes (IEHD-BBF) model has huge potential for restoration and reestablishment of natural and artificial aquatic ecosystems with minimal care, attention, management and funding. Such ecological restoration using the IEHD-BBF model can serve the needs of dwindling bees and insect pollinator populations, along with local resident and migratory birds and indigenous fishes to successfully multiply in an integrated multi-species catering dynamic ecological system.

Nevade bee foraging on Phacelia in a restored ecosystem. Photo credit: Saikat Kumar Basu

Regionally Specific Ecological Restoration

It is important however to note that plant yield and adaptation varies according to different ecosystems and agro-climatic conditions. It is also important to note that plants exhibit a strong Genotype X Environment interaction (G X E or GE effect). As a consequence, it is not advisable to use same pollinator mix at different locations and habitats for integrated habitat development. Locally adapted biodiverse pollinator mix selected through multi-location trials under varied geographical, geological, ecological, and climatic variations across different latitudes needs to be seriously evaluated for optimal results. Locally adapted pollinator mix with their unique combination of diverse species suited and adapted for individual agro-climatic and ecosystem regions has the potential to yield optimal results.

The flowering periods of the components of the pollinator mix need to be thoroughly investigated and tested against specific environment to evaluate what diversity of natural insect pollinators they are attracting and how well the plants included in the pollinator mix are adapting to the local parameters, withstanding competition against local weeds under field conditions. It will be important to identify the plant species that are performing best under natural conditions at different agro-climatic conditions with respect to establishment, regeneration, and attracting natural insect pollinators. If judicious selection of appropriate plant species is made with local adaptation to agro-climatic variability across different families; and with different flowering period; the resultant pollinator mix will be more suitable and yield optimal results in protecting and conserving pollinators as well as help is establishment or restoration of natural ecosystems.

Canada geese family in restored habitat. Photo credit: Saikat Kumar Basu
Bee foraging on sainfoin flower. Photo credit: Saikat Kumar Basu

Saikat Kumar Basu has a Masters in Plant Sciences and Agricultural Studies. He loves writing, traveling, and photography during his leisure time and is passionate about nature and conservation.

Feature photo: Pollinator sanctuaries can help establish small ecological units over time. Credit: Saikat Kumar Basu

SaveSave

Go to Top