Tag archive

agroecology - page 4

Holistic Management

in Grow Organic/Land Stewardship/Summer 2017/Tools & Techniques

Blain Hjertaas

Holistic Management is a decision making system that helps us make better decisions. It teaches us to make decisions that are simultaneously sociologically, environmentally, and economically sound. The end result is happy people, healthy profits, and regenerating soils.

Holistic Management emphasizes principles of regenerating the soil. Our modern industrial approach to agriculture has been a disaster leading to declining nutrient density in food. We consume just over a half tonne of food per year, in the process of producing this food 10 tonnes of soil are lost. Clearly a system of agriculture like this cannot continue.

Holistic Management teaches us the basic principles of regenerative agriculture. How each of us uses these principles is what makes holistic management so unique, as each uses their own creativity to make it work in their own situation.

Principle #1 Solar Capture

To be successful we have to capture sunlight. It is free and non-limiting. There are only three things we can do to increase solar capture: we can make solar panels larger, put more panels up, and leave them turned on longer. On the farm, plant spacing and diversity will largely determine the size and density of the leaves—and in turn how much solar capture is available. We have the potential to capture solar energy from snowmelt to snow arrival (in Saskatchewan, that’s approximately 220 to 250 days). Most annual cropping systems capture solar energy for 70 days of the year. If we are not capturing energy, our soil health is declining. The purpose of solar capture is to send energy to the soil. We need to look at inter cropping, winter crops, poly cropping, etc to increase our harvest of solar energy.

Principle #2 Water Cycle

To make crops grow we need moisture. We have no control as farmers as to how much or when it rains but we have total control as to whether the rainfall is effective (goes into the soil) or not effective (runs off). To make the water cycle effective we need to keep our land covered in litter (green or dead plant material). This absorbs the physical effect of the raindrops and allows them to enter the soil slowly. You can think of the litter layer like the skin on your body. If you have a major burn the consequences can be catastrophic. Litter provides a similar role for the earth. It keeps it warmer in cool times, cooler in warm times, and it allows the moisture to enter and prevents it from evaporating. Moisture is critical for life; to capture and hold it is critical for our success. One of our goals should be to capture every raindrop where it falls.

Principle #3 Mineral Cycle

To have a functioning mineral cycle we need active biology. This occurs when we have solar capture to send sugar down the roots which becomes root exudates. This exudate is the food for the bacteria and fungi. The mycorrhizal fungi physically attach themselves to the root hairs of the plant. In return for the sugar, the fungi get minerals for the plant. These minerals are generally not available to plant; however the mycorrhizal fungi can remove minerals from the soil particles and transport it directly to the plant. This is a synergistic relationship where the plant feeds the fungi and the fungi feeds the plant. This is how nutrient dense food is produced. To have an effective functioning mineral cycle in place, we need to feed the workers below the ground (solar capture) and keep them warm and moist (litter layer and effective water cycle). The bacteria provide many diverse roles from producing enzymes required to being food for the predators which in turn releases nitrogen for the plants. It is wonderfully complex. All we need to do as managers is to foster and enhance and it will continue to get better. All of the living and dying of these billions of organisms is what ultimately sequesters carbon.[DS1]

Principle #4 Community Dynamics

Diversity is wonderful: the more the better. Diversity is not limited to what you plant. Look around; diversity is found in birds, insects, people, animals, and plants. There are synergies between species we do not fully understand. The whole is greater than the sum of its parts: 1+1>2. The challenge becomes how we grow crops that we can harvest mechanically. Poly cropping and inter cropping are becoming new words to farmers as they learn how to put different types of rotations together to harvest the power of this diversity.

How these four principles come together on your farm is up to your creativity. As the four principles are enhanced good things begin to happen. Carbon sequestration begins in the soil. 1 gram of carbon holds 8 grams of water. Increase carbon storage, your farm becomes better able to withstand drought or extreme wet conditions. As carbon increases along with solar capture more life can live below ground. This life below ground increases the nutrient density of the food which is critical for our health. Our requirement for purchased inputs declines and yields go up which certainly helps profitability.

Society will benefit by more nutrient dense food, less infrastructure damage in severe weather events, and carbon being removed from the atmosphere. On my operation in South Eastern Saskatchewan, I have been monitoring soil carbon levels since 2011. I am averaging 22.88 tonnes of CO2 sequestered per hectare per year on a grazing operation. Each Canadian has a carbon footprint of 18.9 tonnes/person/year. Every hectare I operate more than sequesters one Canadian’s carbon footprint.

Regenerative farms provide tremendous value in ecological goods and services to all of society that we are not recognized for. On my 1000 acre operation at a value of $20/ton for CO2, my sequestration value is worth $175,000 per year to society. More water holding and more nutrient dense food and better diversity with endangered grassland birds returning—what value is encompassed there that cannot be quantified?

Holistic Management helps you to make better decisions to achieve the goals that you have for yourself and your family. Along the way your operation should become more profitable and your ecosystem more resilient.

Learn more: holisticmanagement.org


Blain Hjertaas is a Certified Holistic Educator with Holistic Management International. He has 15 years of practical experience using Holistic Management running a 1000 acre grass operation in Saskatchewan, where they also raise lamb, custom graze cows, and poultry. Blain has a passion for carbon sequestration and offers consultations and education on Holistic Management and how the environment functions and how our actions will ultimately influence the ecosystem.

Photo credit: Sandy Black

bhjer@sasktel.net

Preserving and Restoring First Nations Foods and Medicines

in 2016/Climate Change/Indigenous Food Systems/Seeds/Summer 2016

Nicholas Peterson

I feel a deep connection to the land, a feeling that spans more than just a couple generations, but a feeling of millennia. Having a First Nations heritage from the Nicola Valley it’s impossible not to recognize that I am at the very place where my ancestors gathered, living on the same land they too survived upon, especially as I take my own family to gather foods and medicines. Growing up with a relationship to this place, and an understanding of being stewards of the land, organic farming seemed to be a logical fit, both for raising my family and for my own lifestyle.
 
With my love and knowledge for farming, I can’t help but see the importance of filling knowledge gaps to assure beautiful and productive grasslands for future generations. Observing land disturbance through mining, pipelines, and transportation corridors, I didn’t feel in my heart that best practices for reclamation were being used.
 
Government and industries will continue to impact and disturb natural areas, no doubt about it. This leaves an urgent and constant need for land reclamation to not only help mitigate the negative impacts of such disturbances, but also to restore stable and resilient ecosystems and the beneficial ecosystem services they provide (Dong et al. 2015). After land disturbance, agronomic seeds are typically used in restoration and the disturbed areas become swathes of land that to me are an eye sore on the landscape.
 
 
In order to restore disturbed sites to their natural, pre-disturbed condition, which should be our goal, there is a great need for a more abundant, consistent, and higher quality supply of native seed (Burton et al. 2002). Demand for the use of native plants in restoration is increasing and due to the current and growing need for native seed there is a lack of supply. As well, there is a lack of research on seed storage methods, seed viability, and germination success of native plants. Native species are often expensive and difficult to obtain in large quantities (Burton et al. 2002).
 
Fortunately, there is exciting research happening on native seeds around the world – including our own backyard. Currently, my research is focused on a masters thesis (Use of Native Seed of British Columbia’s Interior Grasslands: Seed Storage & Germination Trials Using Smoke Application on First Nations Traditional Foods and Medicines). I am exploring seed germination with the aim of filling some of the knowledge gaps on breaking seed dormancy in native plants, especially through testing the effects of smoke on seed germination.
 
Fires are and have been a part of the local natural history. Fire has also been used as a land management tool by First Nations to help ensure abundant and healthy food sources(Miller et al. 2010).Many seeds have evolved to inherit specific characteristics that not only allow them to survive fire, but to break dormancy and germinate based on cues caused by wildfires (Landis 2000). Seeds of many species appear to respond positively to the application of smoke (Franzese et al. 2011, Gonzalez et al. 2012, Landis 2000, Read et all. 1999).
 
 
The main objective is to increase the germination success of native species, which in turn will hopefully increase use of native species used in reclamation and restoration projects. Knowing that many projects are proposed years before initial construction, we can collect and stockpile seed from the very natural areas that will be affected by scheduled projects, before they are disturbed. This assures best genetic appropriateness and local plant adaptability to the area when it comes time for rehabilitation.
 
Species selection for the germination trials was difficult. Deciding to use many First Nations foods and medicines, I reflected on childhood gathering and consulted with local First Nations elders and wisdom holders. I asked if there were species of particular importance and ones that they continue to harvest and use today. Grasses are the dominant species in a grassland but because of my interest in cultural importance I knew there had to be an emphasis on the forbs. The forbs are a large and important part of the food and medicine crops harvested by First Nations. Coincidentally, forbs have a considerably larger knowledge gap in seed research with little to nothing found on certain species.  
 
 
Table 1:Species, common name, and life forms of seeds tested for germination response to smoke water. Nomenclature follows E-Flora BC database.
 
Species:
Common Name:
Life form:
Achnatherum hymenoides
Achnatherum occidentale
Achnatherum richardsonii
Allium cernuum
Allium geyeri
Amelanchier alnifolia
Arnica latifolia
Balsamorhiza sagittata
Berberis aquifolium
Calamagrostis rubescens
Calochortus macrocarpus
Claytonia lanceolata
Crataegus douglasii
Erythronium grandiflorum
Festuca campestris
Fritillaria affinis
Fritillaria pudica
Gaillardia aristata
Juniperus scopulorum
Lewisia rediviva
Lomatium macrocarpum
Lomatium nudicaule
Prunus virginiana
Poa secunda
Pseudoroegneria spicata
Rosa woodsii
Sheperdia Canadensis
Indian Ricegrass
Stiff Needlegrass
Spreading Needlegrass
Nodding Onion
Geyer’s Onion
Saskatoon
Mountain Arnica
Arrow Leaved Balsamroot
Oregon Grape
Pinegrass
Mariposa Lily
Western Spring Beauty
Hawthorne
Glacier Lily
Rough Fescue
Chocolate Lily
Yellow Bell
Brown Eyed Susan
Rocky Mountain Juniper
Bitterroot
Large Fruited Desert Parsley
Barestem Desert Parsley
Choke Cherry
Sandberg Bluegrass
Blue Bunch Wheatgrass
Prairie Rose
Soopolallie
Grass
Grass
Grass
Forb
Forb
Shrub
Forb
Forb
Forb
Grass
Forb
Forb
Shrub
Forb
Grass
Forb
Forb
Forb
Shrub
Forb
Forb
Forb
Shrub
Grass
Grass
Shrub
Shrub

I am grateful to Thompson Rivers University for the opportunity to do research and to further my education. I have high hopes of seeing more native seed used in future restoration and reclamation projects. My intention is that this research will further the practical application of these techniques in restoring ecosystems, while encouraging farmers, backyard gardeners, and anyone who manages land to include native plants in their ecosystems.


Nicholas Peterson is a farmer at Nicola Valley Produce (www.growinggarlic.ca) with his wife Vileena and five children, specializing in gourmet garlic cultivars. He is a member of the Lower Nicola Indian Band in Merritt, BC, and was elected Councillor in 2013. Nicholas is currently working on his Masters of Environmental Science from Thompson Rivers University, exploring Native Seed Germination for land reclamation and restoration. Nicholas has always had a passion for growing plants and learning more about his natural surroundings. He loves learning and applying the principals taught to him through his First Nations heritage.

Photos: All photos by Nicholas Peterson

Reference Cited:

Burton, Philip j.; Burton, C.M. (2002) Promoting genetic diversity in the production of large quantities of native.Ecological restauration,20, 117–123.

Dong, X., Dai, G., Ulgiati, S., Na, R., Zhang, X., Kang, M. & Wang, X. (2015) On the Relationship between Economic Development, Environmental Integrity and Well-Being: The Point of View of Herdsmen in Northern China Grassland.Plos One,10, e0134786.

Franzese, J. & Ghermandi, L. (2011) Seed longevity and fire: Germination responses of an exotic perennial herb in NW Patagonian grasslands (Argentina).Plant Biology,13, 865–871.

Gonzalez, S.L. & Ghermandi, L. (2012) Fire cue effects on seed germination of six species of northwestern Patagonian grasslands.Natural Hazards and Earth System Science,12, 2753–2758.

Landis, T.D. (2000) Where there’s smoke…there’s germination?Native Plants Journal,1, 25–29. Miller, A.M., Davidson-Hunt, I.J. & Peters, P. (2010) Talking about fire: Pikangikum First Nation elders guiding fire management.Canadian Journal of Forest Research,40, 2290–2301.

Read, T.R. & Bellairs, S.M. (1999) Smoke affects the germination of native grasses of New South Wales.Australian Journal of Botany,47, 563–576.

Promoting Productive Pastures

in Crop Production/Land Stewardship/Livestock/Tools & Techniques/Winter 2016
Well managed pastures

Andrea Lawseth, B.Sc., M.Sc., P.Ag. AEL Agroecological Consulting

Pasture management is one of the main challenges for organic livestock producers throughout the province. In the lower mainland and on Vancouver Island, we struggle with wet climates and waterlogged grazing areas, while in the interior of the province the hot and arid climate poses other challenges that can be equally difficult to manage. Despite these difficulties, there are some techniques and tricks that you can follow to maximize the pasture that you have available and utilize your land more effectively.

Rotational and Limited Grazing

In order to maintain sales and productivity, livestock producers want to have as many animals on their land as the land can support. Sometimes we increase the numbers too much, which can result in overgrazing of pastures. Overgrazing occurs when 50% or more of the grass plant is grazed all at once. This can completely stop root growth and severely reduce grass production. Table 1 shows how grazing can affect root growth of grasses.

As the saying goes, “build your fence horse high, pig tight, and bull strong.” Fencing for rotational and limited grazing is often the best tool for reducing grazing pressure and overgrazing on your pastures. Rotational grazing involves breaking larger pastures up into smaller sections and only grazing one section at a time to allow the others to regenerate. This encourages even grazing of pastures as well as many other benefits such as: increased amount and quality of forage, increased growth of desired grass species, reduced weeds, better parasite control, better manure distribution, and more frequent animal-human contact.

As the saying goes, “build your fence horse high, pig tight, and bull strong.”

If you decide to implement rotational grazing then it is best to start by dividing a large pasture in two and grazing each of these separately. You can then divide further later on. Ideally it is best to have 4 pastures that provide enough grazing for 7 to 10 days as this gives each pasture a rest for 3 to 5 weeks. To divide pastures you can use electric fencing or tape at a height of approximately 90 cm (3 feet) or chest height of your livestock. This is a relatively inexpensive method that has proven to be highly successful. It is important to remember that you will need to monitor pasture growth at different times of the year and rotate accordingly.

Limited grazing involves turning your animals out for limited periods of time (once or twice a day, before or after work, for a few hours at a time). More supplemental feeding will be required and grass height will need to be monitored, but it provides the same benefits as rotational grazing.

IMGP2911

Pasture Renovation

Most pastures in BC are in need of some repair due to overgrazing, wet winters, alkaline or acidic soil types, or dry summers. Grass that is lacking density with 50% weed growth or more will need to be renovated to some degree. Management strategies could include a combination of improved pasture drainage, fertilizing, harrowing, liming, and re-seeding depending on budget constraints.

The first step in dealing with an overgrazed or mismanaged pasture is to evaluate what you have to work with. Find a good weed guide to help you identify which weeds exist on your property and take some samples of your pasture soils to send them to a lab for analysis. Your lab of choice will be able to guide you on their most desired sampling technique and will be able to determine the full composition of your soil and nutrient needs.

Improving drainage through the use of surface or subsurface methods such as French drain tiles can eliminate standing water and ideal conditions for weed growth. Aerating the soil will also help water to penetrate below surface soil layers. Additionally, fertilizing with well composted manure will greatly improve soil structure and drainage. Spreading a thin layer of compost will help soil to increase its water holding capacity and will provide a great medium for spreading grass seed. It is recommended to spread once in the spring and again in the fall. Furthermore, harrowing with either a chain harrow or a tractor will also help to improve drainage and break up any clumps of manure compost you have spread.

Liming is an excellent technique for areas with very acidic soil. Weeds such as buttercup (Ranunculus spp.) or field horsetail (Equisetum arvense) are good indicators of acidic soil as they are well-adapted to these conditions. Liming should be carried out in the spring and fall and more often if needed. Again, a soil test will help to determine the pH of your soil.

Finally, re-seeding with an appropriate seed mixture for your property will help to out-compete weeds and maintain good forage production. The key to choosing a mixture is diversity. The varying grass species in a mix will grow in their respective microclimates within your pastures, which will lead to lower vulnerability to disease and pest outbreaks. However, it is still important to tailor your grass mix to the type of soil on your property and the expected use of the pasture (i.e. grazing, sacrifice area, or hay).

Make sure you mention the topography of your pastures and soil characteristics (gained from a soil analysis) to your seed retailer so that they can help identify the right mix for you. The best time to broadcast overseed your pastures is in late September to early October after you have spread your manure compost. Seeding rates will vary with grass species so check with your retailer before seeding.

Before allowing livestock onto the pasture to graze you should allow newly seeded pasture grass to reach a height of 15 to 20 cm (6 to 8 in) and remove your animals when they have grazed the grass down to 8 to 10 cm (3 to 4 in). This will ensure that the grasses have enough food reserves to permit rapid re-growth. Re-growth can take up to 2 to 6 weeks, depending on the time of year, so it is important to keep animals off wet, overgrazed pastures. Wet pastures can also lead to health problems such as foot rot and parasite infestation.

Keeping pastures mowed to a uniform height of 3 inches will help to stimulate equal growth of your grass plants. This will also help to control perennial weeds that do not respond well to mechanical control methods.

Properly managing pastures generally requires a shift in thinking from viewing the crop as a way to feed the animals to viewing the animals as a way of managing the pasture. As a grass farmer, your main goal is to ensure that the grass on your pasture is healthy enough to outcompete the weeds. Through rotational grazing and prevention of overstocking pastures, you will create the right environment to allow your grass to thrive and the soil to remain healthy and productive.


Andrea is the Principal/Owner of AEL Agroecological Consulting and a Professional Agrologist with over 11 years of experience in food system and agricultural land use planning, sustainable agricultural promtion, organic certification, and food security. AEL Agroecological Consulting provides agri-environmental consulting services to all levels of government, non-profit organizations and individuals.

Go to Top