Author

Darcy Smith - page 16

Darcy Smith has 258 articles published.

Healthy Soils Yield Resilient Operations

in 2019/Climate Change/Crop Production/Grow Organic/Land Stewardship/Livestock/Soil/Spring 2019/Tools & Techniques/Water Management

Three case studies examine soil management practices in the face of climate change

By Rachel Penner, BC Agriculture & Food Climate Action Initiative

Improving soil health is one way producers can increase the resilience of their operations in the face of climate change. The BC Agriculture & Food Climate Action Initiative (CAI) has supported multiple projects, with funding from the provincial and federal governments, evaluating practices to maintain or improve soil health. Case studies in three regions of the province offer some practical takeaways for farmers looking to adapt to changes in climate.

Okanagan: Adding Compost and Reducing Irrigation

Climate change is expected to increase average temperatures and lengthen the growing season in BC’s Interior, enabling cherry producers to expand production northward and grow crops at higher elevations. However, expanding production may be limited by challenges with managing soil pathogens and by water availability.

A three-year research project focusing on cherry production in the Okanagan resulted in two key findings: 

  • adding compost to old and new orchards helped maintain soil health
  • reducing post-harvest irrigation by 25% did not impact fruit yield or quality

Gayle Krahn, the horticulture manager at Coral Beach Farms, participated in the project. “It’s through these trials that growers gain the confidence needed to invest in mulches,” says Krahn. “As well, the results from the deficit irrigation studies gave us a good handle on how much water we need in our orchards. Climate change could affect our water supply, so we need to be mindful of our water usage while ensuring we can continue to grow healthy crops.”

Louise Nelson with the Biology department at UBC Okanagan led the three-year experiment. Researchers monitored the effects of compost and mulch applications, comparing results with controls in two new and one established orchard, and assessed the impacts of post-harvest deficit-irrigation.

The study, completed in 2018, revealed that adding compost to cherry orchards had the following impacts on the soil:

  • increased soil organic matter, total carbon and nitrogen, other mineral nutrients and pH
  • increased percentages of nitrogen, phosphorus and potassium in leaves after two years
  • increased fruit firmness and stem pull
  • tended to increase total nematode abundance in soil
  • tended to decrease plant parasitic nematodes in plant roots and soil
  • decreased colonization of roots by arbuscular mycorrhizal fungi

“I would definitely recommend that growers invest in compost as it helps build soil structure, reduce moisture loss and keep soils cool during summer heat,” says Krahn. “The result is increased root growth and a healthier tree, which equates to growing quality fruit.”

The study also found that a 25% reduction in post-harvest irrigation had no impact on fruit yield and quality, stem water potential, tree growth, or leaf mineral content, giving producers greater assurance that they can safely decrease water usage in their cherry orchards post-harvest.

Delta: Using and Maintaining Tile Drains

Climate projections indicate that winter rainfall will increase and extreme rainfall events will double in frequency by the 2050s in BC’s Fraser River delta. This increase in moisture could prevent farmers from getting onto waterlogged fields, either to plant or to harvest, and could also increase soil erosion, nutrient runoff, and damage to crops.

However, effective spacing and maintenance of tile drains can increase the ability of producers to work their fields.

A project in Delta, completed in July 2017, evaluated practices for improving on-farm drainage management as a way to adapt to wetter spring and fall conditions. The project, led by three researchers in the Faculty of Land & Food Systems at UBC in collaboration with the Delta Farmers’ Institute, the Delta Farmland & Wildlife Trust and local farmers, set up demonstration sites on two fields and monitored practices across a total of 30 fields in multiple locations.

The results of the two-year project indicated the following:

  • Using tile drains in vegetable crop fields increased workable days by 8% and by 14% when pumps where also used. (The impact was negligible for blueberry fields.)
  • Drain tiles spaced at 15 feet allowed soil to dry faster in the spring than drain tiles spaced at 30 feet.
  • Cleaning tile drains resulted in 12 extra workable days per year at a cleaning cost of $10/additional workable day/acre.

Central Interior: Practising Management-intensive Grazing

Management-intensive grazing, a practice that involves planned grazing and rest periods for pastures, is a context-dependent practice that can vary from one rancher and pasture location to the next, making it difficult to test the impact it has on soil.

A four-year project in BC’s Central Interior, completed in spring 2017, compared grazing practices and used traditional soil sampling methods, plant community composition and remote sensing to measure soil carbon. Results confirmed that management-intensive grazing increased soil carbon, which has important implications for soil health.

“What got me interested in grazing-management practices was the enthusiasm of the ranching community,” says Lauchlan Fraser, a professor at Thompson Rivers University who led the project. “I wanted to see if some of the claims that were being made held up.”

The data showed that, for intensively managed pastures, total carbon was 28% greater and organic carbon was 13% greater when compared to extensively managed pastures. It is widely agreed that this stored carbon is linked to soil health, and a fact sheet for the study stated that: “Benefits associated with greater soil carbon include soil moisture retention, erosion control and species biodiversity.”

These outcomes were experienced by the producers who participated in the study. All the ranchers reported that they saw improved soil moisture retention, which would help them cope better in a drought year. They also thought the practice would work as a tool to control invasive species and improve plant and animal diversity, both important contributors to resilient grazing systems.

“It would be worthwhile to follow up with doing the research required to test how biodiversity and soil moisture are influenced,” says Fraser.

While carbon sequestration is primarily associated with climate change mitigation, the project’s final report found additional implications for climate change adaptation: “Flexibility of electric fencing, and actively managing cattle on a daily basis, was identified to be an adaptation strategy, since a rancher is able to adapt his or her practices based on conditions which vary from one year to the next,” says Fraser.

Project Funding and Detailed Reports

For all three of the projects, funding was provided by the Governments of Canada and British Columbia through the Canadian Agricultural Program as part of the Farm Adaptation Innovator Program delivered by CAI.

Complete project results and fact sheets can be found on the CAI website at:

bcagclimateaction.ca


Rachel Penner is the Communications Specialist for the BC Agriculture & Food Climate Action Initiative. She grew up on a grain farm in southwestern Manitoba, received her journalism diploma in Alberta and spent time as a writer and editor in Saskatchewan. She now resides in Victoria, BC, where she works and volunteers as a communications designer and strategist.

Feature photo: Farm field in Delta, BC. Photo credit: CAI – Emrys Miller

Farm Story: the Biodynamic Ice Break

in 2019/Crop Production/Grow Organic/Land Stewardship/Preparation/Soil/Spring 2019/Tools & Techniques

Anna Helmer

Would you mind if we talked about Biodynamic farming?

There. That’s how you keep your readership small. Those of you still with me have fought through eye-glaze and eye-roll and have resisted page turn. You will notice that even I am struggling a bit to stay on topic, and if only you could see the amount of squirming and fidgeting I am doing as I try to find the right way to write about one of the more under-simplified and over-complicated farming methods of our time.

There is no way around this fact: Biodynamic farming methods involve focusing the power and influence of the entire universe on the health and productivity of the soil, plant, farmer, and consumer. The sun, the planets, the galaxies beyond ours: they all matter. The position of the moon matters. It’s complicated. It’s off-putting.

And yet, quite simply, it works whether you understand why or not. In fact, the less time sorting that out, the more time there will be for actual work and that is what really matters.

We do need to talk about it, though. Biodynamics is an approach to farming that combines science, philosophy and common sense and it should not be avoided. Something like this could easily become the future of farming.

You should know that it is a popular farming method in Germany, which has the highest concentration of scientific-minded farmers in the world, a fact I completely fabricated but which I believe could be used for emphasis without harm. I have (in actual fact) heard German farmers speak in excruciating scientific detail about soil science and crop management and then mention in a self-consciously off-hand manner that they also use Biodynamic preparations. Pressed further, they become extremely and remarkably vague about the details. I find this fascinating: farmers like that would not waste their time with something that wasn’t working.

Our farm has been Biodynamic in practice and often certificate since the mid-nineties when my parents attended a conference on the subject and were impressed with the practical experience of the speakers. We have slowly incorporated some methods into our farming practices—and avoided talking about it as we really don’t understand it well enough to explain.

To be honest, I have not been paying much attention to the whole thing, content to let my parents and sister tell me what to do. It seemed more important to learn things like welding, mechanics, and fertility-building cover crop management. Although I have certainly not mastered any of that, I have gradually pushed Biodynamics up higher on the “things-to-learn-that-will-probably-be-helpful” list.

Some Biodynamic practices have been incorporated thoroughly into our farm routine. Mom’s Biodynamic compost heaps, for example, could probably turn old cars into nice, rich, loamy soil. Tree branches certainly presented no difficulty. I follow her directions to build the heap, and I add the preparations (yarrow, chamomile, nettle, oak bark, dandelion, valerian) and marvel at the result a few months hence. It seems like magic, but really it isn’t.

My sister annually buries cow horns stuffed with manure and that becomes the preparation we apply to the carrot field every year. It’s very simple: if we do it, we get great carrots. If we don’t, they are normal.

My mom boils it all down quite nicely: it is a fun way to farm.

Our Biodynamic practice does not extend far beyond this. It really should, or at least could. It is time to experiment with a few more methods, acquire some knowledge, become conversant. Most of all, I want to write about it in a way that can be easily understood. Is that possible? Can we keep it fun?

I am starting at a very, very basic level of celestial understanding. This point cannot be over-emphasized. I cannot even tell you for certain what my birth sign of the zodiac is. I just never found it important. In terms of blind faith however, I am on more solid ground. I can “witch” water wells, for example, and fully support the protection of random wild areas on our farm because grandma said there were a lot of fairies living there. I guess the fact that I now believe with absolute certainty that it is quite likely that plant health is influenced not only by the phases and position of the moon but the universe beyond isn’t such a stretch after all. You commoners will have to struggle to keep up.

My first self-assigned task has been to read the original lectures, delivered in 1924 at a German agricultural convention by Rudolph Steiner, a philosopher with a practical bent who is also known for starting the Waldorf school system. This I am doing until the snow melts and I don’t have time for reading anymore. Looks like I might be able to make it through the whole works.

Contained in a book called Agriculture, the lectures were commissioned by a group of farmers who had recently begun to use chemical fertilizers. Although the yields of certain cash crops were reaching unheard-of levels, they noted a significant decline in the health of their soils, and the overall productivity of their farms. Alarmingly, they could no longer produce very much at all without the use of the new chemicals.

So far, for about 95% of what I have read, I have not a clue what he is talking about. Every once in a while, however, he talks about potatoes, and I certainly know what they are. They are the hook that keeps me focused. I keep reading, hoping he will mention them again.

Another point of light is his reasoning for considering the universe in the first place. You can’t describe a person based on the last joint of their little finger, nor describe a farm using one plant in the far corner, but they are strongly related to the whole. If we allow for the possibility that we are the little joint of the little finger of the universe, if becomes obvious that there is a lot going on that matters to us.

We are part of something much bigger.

Stay tuned for the next exciting installment. I am going to be building compost heaps and seeding celeriac at a time suggested by the Biodynamic Calendar: the sun will be in Pisces and the moon in Virgo. I don’t know what this means but hopefully the plants can sort it out.


Anna Helmer farms potatoes in the Pemberton Valley with her family and friends who know she can cook if she must.  

Footnotes from the Field: Climate Change

in Footnotes from the Field/Spring 2019

Are We on the Brink of an Ecological Armageddon?

Marjorie Harris BSc, IOIA V.O.

The United Nations’ 2005 Millennium Ecosystem Assessment Report identified that “biodiversity is an essential prerequisite for the maintenance of ecosystem services providing manifold benefits to human well-being.”

How is Climate Change Impacting the Biodiversity of our Planet’s Ecosystem?

Regional climate change hot spots have begun to undergo dramatic biodiversity reductions and, in some cases, ecosystem collapse due to temperature related food chain disruptions. Scientists in the field of phenology, the study of cyclic and seasonal natural phenomena relating to climate, plant, and animal life have found that rapid climate change is causing a decoupling of once synchronized light-sensitive cycles from temperature-sensitive cycles.

Slower shifts in climate over geological time frames are well recognized natural and cyclic phenomena. Climate studies have demonstrated that a climate shift 6,000 years ago in northern Africa converted the Sahara grassland savannahs to desert sands. Archeological evidence has found cave paintings in the desert showing mermaids and swimmers in the now-dry local lakes.

How Can We Know that Human Activities are Actually Contributing to an Increase in Global Temperatures?

As the Industrial Revolution was being propelled forward by the burning of fossil fuels, the Greenhouse Effect began building as those fossil fuels released greenhouse gases. The Industrial Revolution began in the 1760’s in Europe and had rooted in North America by the 1820’s.

Atmospheric carbon dioxide concentrations have risen by 39 percent and methane levels have risen to the highest concentrations in at least 650,000 years. These greenhouse gases prevent thermal radiation from leaving the Earth’s surface atmosphere with the ocean acting as a heat sink. The upper ocean layer’s heat content has increased significantly more in recent decades. As the ocean absorbs heat, waves, tides, and currents, move  that heat from warmer to cooler latitudes, and to deeper levels. Eventually this heat energy re-enters the land systems by melting ice shelves, evaporated water (rain), or by directly reheating the atmosphere. Heat energy stored in the ocean has a long life span—it can warm the planet for decades after it was absorbed.

Early oceanographers recorded ocean temperature data from 1872 to 1876 aboard the HMS Challenger. The ship sailed 69,000 nautical miles, recording 300 ocean temperature profiles at several depths. Fast forward to today’s Argo Project headed up by oceanographer Dr. Dean Roemmich. The Argo Project uses 3,000 free-drifting floats for long-term monitoring of global ocean temperatures and salinity every 10 days. In a recent scientific paper Dr. Roemmich reported the results, comparing today’s ocean temperatures to those taken by HMS Challenger’s crew. The study revealed an overall average temperature increase of 1.1 degrees Fahrenheit (0.59 degrees Celsius) at the ocean’s surface over the past 135 years.

Rising Ocean Surface Temperatures Directly Influence Global Weather Patterns

NASA scientists have developed computer simulations of historical weather data. These data described the ocean temperatures that created the weather conditions leading to the North American Dust Bowl from 1931 to 1939, considered to be the most significant meteorological event of the 20th century. NASA scientists found that the Atlantic Ocean surface temperature had risen by 1 degree Farenheit, and that the Pacific Ocean had experienced a cooling La Niña cycle. The combination triggered the drought weather patterns for the America Plains.

The Dust Bowl eroded 100 million acres into stripped and lacerated wastelands spanning Nebraska, Kansas, Colorado, Oklahoma, Texas, and New Mexico, with dust storms severely affecting a total of 27 states. Farms in the Dust Bowl lost an average of 480 tons of topsoil per acre. By 1940, the Dust Bowl conditions had prompted the relocation of 2.5 million people. The infamous Black Sunday storm on April 14, 1935 measured 200 miles across by 2,000 feet high with winds at 65 mph. The dust blocked the sunlight causing temperatures to drop 25 degrees Farenheit in one hour. During one severe two-hour period on Black Sunday, the violent storm stripped away twice as much soil as had been dug out over seven years to build the Panama Canal.

Hugh Hammond Bennett became known as the father of soil conservation in his work as founder and head of the US Soil Conservation Service. Bennett identified poor farming practices, deep plowing, denuded soil, removal of trees, and drought as the main causes of the Dust Bowl.

Under Bennett’s leadership, the US Soil Conservation Service initiated a 30-year program to restore and mitigate the damages of the Dust Bowl, including the replanting of denuded land. Bennett also set up programs to teach farmers better land management techniques such as leaving crop stubble in the field after harvest. Additionally, in the 1930’s, the US government purchased 11.3 million acres and replanted native grasslands. However, damage to the land was so severe, that by the year 2,000 some areas were still barren of growth and blowing dust.

Light and Temperature-Sensitive Ecosystem Cycles

Bennet stated, “the Kingdom of Nature is not a democracy; we cannot repeal natural laws when they become irksome. We have got to learn to conform to those laws or suffer severer consequences than we have already brought upon ourselves.”5

Here we are some 80 years after Bennett’s warning, and status updates report that climate change is moving forward unabated. An important factor in climate change is the disruption of ecosystem relationships by decoupling synchronized light-sensitive cycles from temperature-sensitive cycles.

Farmers are familiar with counting heat units to time the application of pest controls. This is because many insects—as well as reptiles, and amphibians—use temperature-sensitive cycles as cues for hatching emergence. Sex selection for some reptiles, such as crocodiles, is temperature based—the temperature of incubation will determine the sex of the offspring. This leaves many reptiles at-risk: an entire sex can be removed from the reproductive landscape in a few breeding seasons.

Phytoplankton communities are losing biodiversity in the face of higher ocean temperatures as natural selection is for more heat-tolerant groups. Phytoplankton make up only 0.2 percent of global primary producer biomass, yet they are responsible for about 50 percent of the world’s primary food production. In addition, phytoplankton are key components in the global carbon cycle. Reduction in the biodiversity of phytoplankton communities changes the primary producer profiles and reduces the resilience of the ocean ecosystem.

The concept of an Ecological Armageddon is emerging — Dr. CA Hallmann reports an 82 percent decline in flying insects at 63 protected sites in Germany, over a 27-year study period. Hallmann notes, “loss of insects is certain to have adverse effects on ecosystem functioning, as insects play a central role in a variety of processes, including pollination, herbivory and detrivory, nutrient cycling, and providing a food source for higher trophic levels such as birds, mammals, and amphibians. For example, 80 percent of wild plants are estimated to depend on insects for pollination, while 60 percent of birds rely on insects as a food source.”

In Puerto Rico’s Luquillo rainforest, researcher Bradford C. Lister found that biomass loss  increased from 10 to 60 times over the 30-year study period. Lister’s analysis revealed a synchronous decline in lizards, frogs, and birds that eat insects. Lister determined that the forest temperature had risen 2.0 degrees Celcius over the study period—a temperature change that prevented insect eggs from hatching, and reducing food supply for animals higher up the food chain.

Light-sensitive activities for mammals and birds include migration, breeding, and predation. As well, some plants are reliant on light-sensitive cues for growth stimulation.

For example, caribou populations in the Artic are in decline due to the decoupling of temperature and light-sensitive cycles. Pregnant caribou migrate to birthing grounds based on light cues to time their arrival with the emergence of nutrient-rich plant growth. However, due to rising artic temperatures, the plants are germinating earlier. When the pregnant caribou arrive to their feeding grounds, plant nutrition has already decreased—resulting in malnourished caribou mothers producing fewer calves. Another light-sensitive lifecycle example is the change in the Arctic mosquito cycle. Migrating birds rely on the larval Arctic mosquitos as a rich food source, but the mosquitos are hatching earlier under warmer temperatures. When birds arrive, the mosquitos are in their adult form, and the birds are without a source of food. The now unchecked mosquito population impacts the caribou lifecycle when caribou calves are predated to death by unusually gigantic swarms of blood-sucking adult mosquitos.

The butterfly effects of climate change on the intricacies of the planetary food web are only just emerging. Hopefully, we can adapt before an Ecological Armageddon occurs.


Marjorie Harris (BSc, IOIA VO) is an organophyte, consultant, and verification officer in BC. She offers organic nutrient consulting and verification services supporting natural systems.

References:
Roemmich, D, Gould WJ, Gilson J. 2012. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nature Climate Change. 2:425-428.  10.1038/nclimate1461
NASA Explains the Dust Bowl Drought: nasa.gov/centers/goddard/news/topstory/2004/0319dustbowl.html
Handy Dandy Dust Bowl Facts: kinsleylibrary.info/wp-content/uploads/2014/10/Handi-facts.pdf
The Dust Bowl: u-s-history.com/pages/h1583.html
The Dust Bowl, an illustrated history, Duncan & Burns, 2012 (pages 160 – 162)
Climate Change: Ocean Heat Content: climate.gov/news-features/      understanding-climate/climate-change-ocean-heat-content
Temperature and species richness effects in phytoplankton communities. ncbi.nlm.nih.gov/pmc/articles/PMC3548109/
Lister, B.C. Department of Biological Sciences, Rensselaer Polytechnic University, Troy, NY 12180 pnas.org/content/115/44/E10397.short
More than 75 percent decline over 27 years in total flying insect biomass in protected areas: journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809
The Millennium Ecosystem Assessment 2005: was called for by United Nations Secretary-General Kofi Annan in 2000 in his report to the UN General Assembly, We the Peoples: The Role of the United Nations in the 21st Century.

Organic Stories: UBC Farm, Vancouver, BC

in 2019/Climate Change/Crop Production/Grow Organic/Land Stewardship/Organic Stories/Past Issues/Seeds/Winter 2019

Cultivating Climate Resilience in a Living Laboratory

Constance Wylie

Surrounded by forest and sea, the University of British Columbia is a quick 30 minute bus ride west of downtown Vancouver. A city unto itself, more than 55,800 students and close to 15,000 faculty and staff study, work, live, and play there. A small but growing number also farms. Countless hands-on educational opportunities are offered at the UBC Farm: from internships and research placements for university students, to day camps and field trips for school children, to workshops and lectures for interested community members. There is something for everyone, including bountiful amounts of fresh organic produce.

Globally, agriculture accounts for 25% of the world’s greenhouse gas emissions. Half of that is from land use changes such as deforestation, while the other half is attributed to on-farm management practices and livestock. Moreover, our food systems are contributing massive amounts to our ecological footprint. Food accounts for about 50% of Vancouver’s footprint, according to UBC Professor Emeritus William Rees. Evidently, food can, and must, be an agent of change. In our rapidly changing world where the future of yesterday is uncertain, farmers are on the front line.

The folk at UBC’s Centre for Sustainable Food Systems are digging into these challenges using their very own “living laboratory,” aka UBC Farm, as a testing ground. It is a hotbed of leading agricultural research with “aims to understand and transform local and global food systems towards a more sustainable food secure future,” according to the farm website. It is also a green oasis where everyone is welcome to find a quiet moment to connect with nature; the hustle and bustle of campus dissipates on the wings of beneficial insects and chirping birds.

At 24 hectares, this certified organic production farm makes for a unique academic environment. As Melanie Sylvestre, the Perennial, Biodiversity, and Seed Hub Coordinator, puts it, “having a farm that does research in organic production is unique in BC and vital for the future of organic agriculture” in the province.

We can all whet our farming practices by reviewing some of the 30 ongoing research projects at UBC Farm. It should come as no surprise that many of the projects relate coping with the effects climactic changes have on agriculture, locally and globally.

UBC Farm. Credit Constance Wylie

Organic Soil Amendments

One such project is Organic Systems Nutrient Dynamics led by Dr. Sean Smukler and Dr. Gabriel Maltais-Landy. Their research compares the performance of typical organic soil amendments: chicken and horse manure, blood meal, and municipal compost. Depending on the type and amounts of organic soil amendment applied, crop yield will vary, and so too will the environmental impact. They found that often the highest yields result from over fertilization of Nitrogen and Phosphorus, which leads to greater GHG emissions. For example, chicken manure releases potent levels of GHG emissions.

It is a challenging trade-off to negotiate. This information is critically important for the organic grower trying to decrease their environmental impact. Another topic of study was the value of rain protection for on-farm manure storage: for long-term storage, it is always best to cover your manure pile!

Climate Smart

Were you aware that the application of black or clear plastic mulch with low longwave transmissivity can increase soil temperatures by about 40%? Conversely, a high reflective plastic mulch can reduce soil temperatures by about 20%. These are some of the findings of the Climate Smart Agriculture research team, composed of Dr. Andrew Black, Dr. Paul Jassal, and PhD student and research assistant Hughie Jones. In an interview for his researcher profile, Hughie explains that through his work he is “trying to get direct measurements … so that people have access to hard, reliable data” for enhancing crop productivity with mulches and low tunnels for season extension. “By increasing the amount of knowledge available we can reduce the amount of guessing involved for farmers, increasing their predictive power.” When it comes to getting the most out of a growing season, less time spent with trial and error can make a huge difference to your yields and income.

Fields of curcubits at UBC Farm. Credit Sara Dent @saradentfarmlove

Seed Savers

With the fall frost of 2018, the first phase of the BC Seed Trials drew to a close. The collaboration between UBC Farm, FarmFolk CityFolk, and The Bauta Family Initiative on Canadian Seed Security kicked off in 2016 to run these trials. Lead scientist and project manager Dr. Alexandra Lyon explained that the first phase asked, “What are the most hardy, resilient, well adapted varieties that we already have access to?”

More than 20 farms from across the province were involved in trialing seeds including kale, beets, leeks, and spinach. These varieties were chosen as crops that are already known to perform well in BC. The seeds in question are all open-pollinated varieties which boast “higher resilience then hybrid varieties in the face of climate change,” says Sylvestre, who has also been a leading figure in the seed trials.

While farmers may choose hybrid seed for their higher yields and other selected traits, Sylvestre explains that they lack “horizontal resistance, the concept of having diversity within a population allowing it to withstand various climatic changes. Through our selection process, we try to achieve horizontal resistance and therefore offer new varieties that would be better suited in various growing scenarios. It is important to understand that goal of horizontal resistance is among multiple other goals to reach varieties with agronomic traits that will be desirable to farmers and customers.”

“Community building around our local seed systems has been significant through this research project,” Sylvestre adds. The seed trials are also contributing to community building at UBC Farm itself. Rather than compost the crops grown for the seed trials, they are harvested and sold at the weekly farmers market.

With new funding secured from the federal government, the BC Seed trials will continue for at least another five years. Going ahead, the “role of UBC Farm is to train and connect farmers for farmer led plant breeding” says Lyon. While institutional academic research will play a significant role in seed selection and adaptation, “lots of types of seed trialing will be really important.” This means that farmers across the province “supported with tools and knowledge for selecting and saving seed” can contribute significantly to our collective seed and food security. Lyon encourages farmers to reach out with their experiences with regards to climate change and seed. She and members from the team will also be at the COABC conference February 22-24, 2019 with the intention to connect with BC farmers.

Ultimately, at UBC farm, “all the issues people are working on play into what we will need to adapt to climate change” says Lyon. The formal and informal networks made at UBC Farm are really starting to take root across the province. This is an amazing resource for us all to profit from. Take advantage of these slower winter months to dig in and digest the information available to us—it may very well change the way you approach your next growing season.

FOR MORE INFO

Check out UBC Farm online at: ubcfarm.ca

More on Organic Systems Nutrient Dynamics: ubcfarm.ubc.ca/2017/06/01/organic-soil-amendments

More on UBC’s Climate Smart Agriculture research: ubcfarm.ubc.ca/climate-smart-agriculture

For BC Seed trial results and updates: bcseedtrials.ca

Dr. Alexandra Lyon can be contacted at alexandra.lyon@ubc.ca

Seed grown at UBC farm is now available through the BC Eco-Seed Coop. Keep an eye out for two new varieties: Melaton leek and Purple Striped tomatillo.


Constance Wylie left her family farm on Vancouver Island to study Political Science and the Middle East at Sciences Po University in France, only to return to BC where she took up farming, moonlighted as a market manager, and got a PDC in Cuba and Organic Master Gardener certificate with Gaia College. She now lives, writes, and grows food in Squamish with her dog Salal.

Feature Image: UBC Farm. Credit: Sara Dent @saradentfarmlove

Winter Work: the Mexico Myth

in 2019/Farmers' Markets/Grow Organic/Organic Community/Past Issues/Winter 2019

Anna Helmer

Here’s a question I hear a lot: So, what are you going to do now that winter is here and there is no more farming? Leaving aside the irony that I most often hear it while selling potatoes at farmers’ market, not to mention its (alarming?) assumption that farming is not a full year occupation, why do I struggle to find a good answer? I start with an earnest assertion that there is plenty of farm work to do and as I move on to mumbling something about markets, a ripple of uneasiness passes through the thought process and I begin to lose the thread of my theme, which as always has to do with me being a hard-working farmer. My answer becomes yet more bumbly and borderline indignant as I try to cling to and insist upon this image. A little tension develops in the space between my eyes.

The tension tells a truth and the truth is that for certain there are farm related tasks that I ought to be doing right now, and I have not been doing them. In the process of answering the question eventually I am going to get to the part where I have to explain that I have been choosing baking, reading, and in fact a whole bunch of things over farming. It will become clear that farm work is coming second, or perhaps even dead last, on my list of things to do. I resist telling people about that, however, because I don’t want them to think they are right, that there is no farming in the winter.

It’s not like there’s nothing to do. Oh my, no. It just means that most of the farm work is not due until spring. The weekly mandatory work consists of attending the winter market and servicing a few restaurant orders. This I can do in my sleep, having done around 1,000 markets lately and perfected the art of weighing out 50lb boxes of potatoes. It’s the only work with any immediate urgency and even that has been reduced to a whimper.

This long deadline is a problem. Spring is so far distant as to be ephemeral. As a deadline it seems ignorable. It is, however, firm. Anything not done by spring will not get done at all. I will be behind before I even get started. I am aware of the consequences yet struggle to produce.

It may be just a function of this particular week, which is featuring deliciously short, slushy, and dusky days. The wood shed is full, prompting lavish firewood usage which in turn demands I read in front of it. Then there is the seasonal requirement to bake cookies. I am not the least interested in: pruning raspberries, clearing a fence line, re-lining the drum washer, washing and sorting 10 tons of potatoes outside…

That work can wait. Or so I tell myself.

In two days, I will be at market again, and someone is going to ask me the question, and that flicker of irritation is going to betray my uneasiness about a lack of productivity. I really need to heed the warning. I need to do some of the farm work on that long deadline list.

My advice to myself is to do a farm job every day. We farmers get to measure work-life balance over the course of a year, rather than a day. It’s a privilege and the steep price is that you need to muster some motivation when it is hard to come by.

So I started small today and ordered next year’s carrot seed. Some would think this is early, but obviously I am partial to a variety and will need to know as soon as possible if it is not available. I ordered 300,000 seeds, which is mathematically more than we need, but allows for the fact that I have been planting carrots for several years now and made a whole variety of mistakes that have resulted in needing more seed.

And wouldn’t you know it, that led to some other jobs getting done that I hadn’t even listed yet. Because I had the farm binder open to compare last year’s order, I noticed that the field notes were not up to date, which led me to check field sizes—a source of on-going angst at our organic inspections. For some reason, although the actual farm boundaries have not changed in 125 years, when we list the fields on the organic application, we can’t settle on their actual size. Dad’s notes say one thing and mine say something slightly else. Drives inspectors crazy and causes an embarrassing amount of confusion.

“Get the field size sorted out” is an absolutely essential job that might not have been done before our spring inspection. Thank goodness I ordered the carrot seed today.


Anna Helmer farms in Pemberton with her parents and other family and has finally eaten more cookies than potatoes.

Feature image: Frosty farm fields. All photos: Anna Helmer

California Programs Show How Farmers Are Key to Reversing Climate Change

in 2019/Climate Change/Grow Organic/Land Stewardship/Livestock/Winter 2019

Shauna MacKinnon

From extreme flooding to drought and previously unheard of temperature variability, climate change is a serious matter for BC organic growers. While agriculture is feeling more than its share of climate change impacts, a set of solutions exist where farmers and ranchers play a key role. Land-based climate solutions can avoid and absorb enough greenhouse gas (GHG) emissions to be equivalent to a complete stop of burning oil worldwide.

This contribution is too important to ignore. An article in the journal Proceedings of the National Academy of Sciences assessed 20 cost effective land-based climate solutions applied globally to forests, wetlands, grasslands, and agricultural lands. These conservation, restoration, and land management actions can increase carbon storage and reduce GHG emissions to achieve over a third of the GHG reductions required to prevent dangerous levels of global warming. The Intergovernmental Panel on Climate Change (IPCC) has stated emissions reductions are not enough to avoid catastrophic climate change impacts: we need to remove existing carbon from the atmosphere. Farmers and ranchers can help do this through practices that sink carbon in soil and vegetative cover.

In California, the fifth largest exporter of food and agriculture products in the world, climate change poses a major threat—drought, wildfire, and a reduction in the winter chill hours needed for many of the state’s fruit and nut crops are already taking a toll on production. California is a leader in climate change policy with ambitious GHG reduction goals, but the state is also recognizing that reductions alone are not enough. California is implementing programs and policies that put the state’s natural and working lands, including wetlands, forests, and agricultural lands, to work sinking carbon.

Field of green rye and legume with mountains in the background and blue sky
Rye & legume cover crop at Full Belly Farm, Guinda, California. CalCAN Farm Tour, March 2017. Photo by Jane Sooby

Carbon Farming: Agriculture as Carbon Sink

Dr. Jeffrey Creque, Director of Rangeland and Agroecosystem Management at the Carbon Cycle Institute in California, is a carbon farming pioneer. It all started with a conversation between himself and a landowner in Marin County. “We were talking about the centrality of carbon to management and restoration of their ranch and watershed,” explains Creque. “That led to a larger conversation about carbon as something they could market and then how exactly we could make that happen.”

The carbon farming concept was founded on early research in Marin County that showed land under management for dairy had much higher carbon concentrations than neighbouring land. This led to research trials by University of California, Berkeley in partnership with local ranches that showed a single year of compost application yielded higher annual carbon concentrations for at least 10 years. In the initial year the compost itself was responsible for some of those carbon additions, but additional annual increases in soil carbon came from carbon being pulled from the atmosphere. The one time, half inch application of compost stimulated the forage grasses to increase carbon capture for a decade or more.

This was enough for researchers to take notice. Producer partners were happy to see the increased yields in forage production that resulted from the compost application. Those first results led to the development of a carbon farm planning tool. “After seeing those results everyone was excited about compost. But we wanted to see what else we could do,” states Creque.

Using the existing USDA-Natural Resources Conservation Service farm planning process as their template (the US equivalent of Canada’s Environmental Farm Plan), Creque and his colleagues re-formulated the approach by putting the goal of maximizing carbon sequestration at the centre of the process. The carbon farm planning tool was the result. The first farm in Marin County completed a Carbon Farm Plan in 2014; today, 47 farms across California have completed plans and about 60 more are waiting to begin.

Along with compost applications, other carbon farming practices include riparian restoration, silvopasture (the intentional combination of trees, forage plants, and livestock together as an integrated, intensively-managed system), windbreaks, hedgerows, and improving grazing practices. Over 35 practices are considered in carbon farm planning. For high impact, riparian restoration is one of the best performers. The high productivity of riparian ecosystems means a large amount of carbon can be sunk in a relatively small part of farmers’ and ranchers’ total land area.

Preparation for planting of a one mile windbreak on a Carbon Farm in NE CA. Photo by Dr. Jeff Cheque, Carbon Cycle Institute

Impact and the Potential for Scaling Up

The adoption of carbon farming practices on one California ranch is equivalent to taking 850 cars worth of carbon dioxide out of the air and putting it into the ground. This ranch has also tapped into new markets for their wool by being eligible for the Climate Beneficial program offered by Fibershed, a network that develops regional and regenerative fiber systems on behalf of independent working producers. A win-win at the farm-scale. But collective impact holds the most potential. “No one farm can ameliorate climate change, but collectively with many farms involved they can have a big impact,” Creque emphasizes.

The implementation of carbon farming practices in California is greatly helped by numerous federal, state, and county level programs that offer cost share contributions. Farmers and ranchers can receive direct grants to implement carbon farming practices from programs such as the national Environmental Quality Improvements Program and California State’s Healthy Soils program. But it has been challenging to convince the government agencies involved in managing climate change of the valuable role agriculture can play.

More and more local climate action plans are being developed, but most fail to consider what natural or working lands can offer to GHG mitigation strategies. “The beauty of agriculture land is that since we are already managing them, not as big of a change is required to manage them differently,” Creque concludes.

Rye & legume cover crop at Full Belly Farm, Guinda, California. CalCAN Farm Tour, March 2017. Photo by Jane Sooby

The Role of Organic Producers

Under their Climate Smart Agriculture initiative, California offers programs on irrigation efficiency (SWEEP), farmland conservation, manure management, and incentivizing farm practices that store carbon in soil and woody plants (Healthy Soils). Each of these programs, funded in part by the State’s cap and trade program, plays a role in either decreasing the amount of GHG emitted from the agriculture sector or increasing the amount of carbon stored in soil and woody plants.

The Healthy Soils program has been particularly popular among organic growers. In the first year of funding over 25% of applicants were organic producers, when they make up just 3% of the state’s total producers. Jane Sooby, Senior Policy Specialist at CCOF, a non-profit supported by an organic family of farmers, ranchers, processors, retailers, consumers, and policymakers that was founded in California, explains why: “Organic farmers have a special role to play because they are already required to use practices such as crop rotation that contribute to carbon sequestration, and they are rewarded in the marketplace with a premium for organic products.”

State programs like Healthy Soils and SWEEP are a start, but more can be done, suggests Sooby. These programs are competitive, and they can be complicated and time consuming to apply to which makes it difficult for smaller scale producers to access the available resources. Sooby would like to see California provide financial incentives to all farmers who are taking steps to conserve water and reduce GHG emissions.

CCOF has engaged directly with government to make their programs more accessible to organic farmers and ranchers at all scales. What more is needed?

Sooby likens the current climate change crisis to the all-hands-on-deck approach of the World War II effort: “Climate change is of similar, if not more, urgency. Governments need to draw up plans for how to support farmers and ranchers in sequestering as much carbon as possible and helping them transition to clean energy solutions.”

Learn more:
California Dept. of Food and Agriculture – Climate Smart Agriculture programs: cdfa.ca.gov/oefi
Carbon Cycle Institute: carboncycle.org
Climate Beneficial Wool: Fibershed.com
CalCan – California Climate & Agriculture Network: calclimateag.org/climatesmartag


Shauna MacKinnon has been working on food and agriculture issues for well over a decade. From social and economic research to supporting research and extension she has been honoured to work with many great food and farming organizations. She currently coordinates the Farm Adaptation Innovator Program for the BC Food & Agriculture Climate Action Initiative, but has contributed this piece as an independent writer.

Feature image: Implementation of a rotational grazing program on a Marin Carbon Farm. Photo by Dr. Jeff Cheque, Carbon Cycle Institute.

Ask an Expert: BC Seed Security

in 2019/Ask an Expert/Crop Production/Grow Organic/Seeds/Winter 2019

Scaling Up Organic Vegetable Seed Production in BC

Emma Holmes, P.Ag

The organic seed sector will be getting a boost through a comprehensive project that includes seed production, business, and market supports.

FarmFolk CityFolk, which has been working to cultivate local, sustainable food systems since 1993, will be leading the project with funding provided from the Governments of Canada and B.C. through the Canadian Agriculture Partnership. The five year, $3 billion Canadian Agricultural Partnership launched on April 1, 2018, and includes $2 billion in cost-shared strategic initiatives delivered by the provinces and territories, plus $1 billion for federal programs and services.

FarmFolk CityFolk will specifically be working on:

  • Developing a mobile seed processing unit to help small and mid-scale seed farmers efficiently and affordably process seed
  • Expanding seed production skills training in the Lower Mainland, Okanagan, Kootenays and North through focused in-person training and webinars
  • Supporting new entrants and small seed businesses with “Seed Enterprise Budgets” to help farmers plan and prepare for expenses, revenues and inventory management
  • Supporting Seedy Saturday events around the province by developing shared event planning resources

This project builds off of FarmFolk CityFolk’s previous work with the Bauta Family Initiative on Canadian Seed Security, as well as Dan Jason’s Seed Resiliency report commissioned by the Ministry of Agriculture this past winter. Jason’s report included an inventory of seed assets in the province as well as recommendations for increasing seed resiliency in BC.

Beet seeds. Credit: Chris Thoreau

British Columbia has the greatest diversity of crops and growing conditions of any province or territory in Canada. This provides a great opportunity to work with a wide range of ecosystems to create regionally tested and locally adapted seeds that support our local foodsheds in uncertain climates and that can also thrive in diverse climates around the world.

Seed production provides BC organic farmers with an opportunity to diversify their farm production and increase revenue. The market for certified organic seed is expected to continue to grow in the coming decades as the consumer demand for organic products increases and certifiers are adopting stricter enforcement around purchasing certified organic seed when available.

FarmFolk CityFolk will be collaborating with other organizations in BC focused on seed, such as the UBC Farm Seed Hub, KPU’s new lab for seed testing and cleaning (a major new asset for the province), and the BC Eco Seed Co-op. The strengths of these organizations, combined with the incredible passion and energy of local seed savers, farmers, and growers, will go a long way in supporting the development B.C.’s organic seed sector, the base of resilient communities and thriving food systems.

bcseeds.org


Emma Holmes has a BSc in Sustainable Agriculture and an MSc in Soil Science, both from UBC. She farmed on Orcas Island and Salt Spring Island and is now the Organics Industry Specialist at the BC Ministry of Agriculture. She can be reached at: Emma.Holmes@gov.bc.ca

Feature image: Examining carrots as part of the BC Seed Trials. Credit: Chris Thoreau

Local Seeds for Local Food

in 2019/Crop Production/Grow Organic/Organic Community/Seeds/Winter 2019

Michael Marrapese

Agriculture as we define it today has existed for roughly 12,000 years. Though the practices have been refined over millennia, modern farmers would still recognize the intent and the activity as ‘farming.’ We can find examples of plants we recognize as cereal grains, peas, barley, wheat, rice, and squash dating back 10,000 years. What makes this possible is that all these food plants produce seed.

Chris Thoreau, BC Seed Security Program Director at FarmFolk CityFolk, notes that seed is also the most efficient way to move food. “Growing seed allows you to ship food in its simplest form,” he says. “Moving lettuce seed across the border is different from moving lettuce across the border. Many of BC’s seed companies are already doing this through online sales.”

Thoreau started farming in 2001 knowing very little about seed. “My introduction to farming was the small scale organic vegetable production that is very prevalent on Southern Vancouver Island,” he says. “Which is also how I got introduced to seeds. It really was by default. There was a lot of local seed production happening in the region. We still had a good dozen seed companies in BC. Seedy Saturdays had been around for 20 years so it was a very active community.”

Rows of seedlings in a field with labels
BC Seed Trials. Credit: Chris Thoreau

In 2006 Thoreau worked on a survey of organic growers to get a sense of what seeds they were buying and from whom. He observed that “growers sourced their seed from places you’d expect like Johnny’s and High Mowing but were also sourcing from some local seed companies like Salt Spring Seeds and Stellar Seeds.”

Thoreau returned to Vancouver to study Agroecology at UBC. Still wanting to grow food while at university, he started Food Pedalers, a microgreens operation in East Vancouver. “It was very paradoxical to be attending the agroecology program but leaving the farm to do that,” he recalls. “I thought growing microgreens was the only way to make enough money for a viable urban farming business in Vancouver. The return per square foot from micro-greens was much higher than any ground crop I could grow. We were doing about 10,000 pounds of microgreens a year. During that time we were buying seed by the pallet load. I draw a lot from my time growing microgreens to help inform my seed work now.”

Thoreau joined FarmFolk CityFolk in 2015 to coordinate the Bauta Family Initiative on Canadian Seed Security (BFICSS). He’s extended his interest in seed production and education, coordinating seed workshops, public events and seed trials throughout BC. The BFICSS project is focusing on locally adapted organic seed to meet the needs of organic farmers. Thoreau notes that “seed optimized for organic production must be bred and produced in organic systems.”

Chris Thoreau and Shauna MacKinnon from FarmFolk CityFolk, and Alex Lyon from UBC, inspect a golden beet seed crop at Local Harvest Market in Chilliwack (2016). Credit: Michael Marrapese

Today, a vast array of seeds are owned, patented, and marketed by a few large corporations. With less than two percent of our population actively farming, our connection to seed and its critical role in our lives is increasingly tenuous. Thoreau points out that seed can play many roles. “Seed production can be a profession or a community building activity or even a therapeutic activity. All are quite different. Small-scale seed growers in BC have great community reach, a pretty good diversity of seeds, but what they don’t have is bulk seeds to sell to farmers.” When he first started farming most of the local seed companies were just doing packet sales. Packets were fine if a farmer was interested in trying a new variety. If they wanted to do a couple of thousand row feet of something, no BC seed grower could accommodate that. “And that is still very much the case today,” he notes.

With a predominately corporate controlled seed system, there are many issues that undermine our food security. Chief among them are irregular seed availability and degraded biodiversity. A century ago farmers may have grown as many as 80,000 different plant species. As more seed is controlled by a few large corporations, the bulk of our food comes from only about 150 different crops. Corporate ownership, patenting, and gene licensing limit the genetic diversity available to farmers. Any biologist will tell you that this is a perilous enterprise.


Chris Thoreau and Shauna MacKinnon from FarmFolk CityFolk, and Alex Lyon from UBC, inspect a golden beet seed crop at Local Harvest Market in Chilliwack (2016). Credit: Michael Marrapese

Farmers are often at the mercy of big seed producers who may be growing for large commercial markets. Specific varieties regularly disappear from catalogues. “That’s one of the reasons people start growing seed themselves,” Thoreau observes. “If they want to have a particular seed that works well in their environment and their operation, the only reliable way to do that is to grow it themselves. A big benefit to this is that evolving a seed crop on your farm year after year, you are going to come up with a new variety uniquely suited to your environment.”

One of the goals of the BFICSS program is to get more BC farmers growing and saving seed, to scale up production in the region, not only for themselves but to share, trade, and sell to other farmers. This process will ensure the genetic diversity and adaptability of seed in our region.

But there are political issues that hinder a regional and more diverse seed economy. Not all seed is available or appropriate to grow for sale. Hybrid seeds do not breed true; the next generation of plants will have a lot of off-types. Many seeds have plant variety protections on them which means farmers can’t grow and market them. Thoreau notes that this actually encourages seed breeding. “In fairness, if I spend ten years developing and growing ‘Chris’s Super Sweet Carrot’ and I start selling it, I do need to recoup the cost of breeding that seed.” Genetically modified (GM) seeds are generally licensed; farmers never actually own that seed so they can’t use it for seed saving. Most BC seed growers are growing heirloom varieties or rare varieties that aren’t protected by intellectual property laws.

Graceful carrot seed umbel. Credit: Chris Thoreau

Thoreau believes there are enormous possibilities for more seed production in BC. Oregon and Washington State are major global seed producers for crops like beets, carrots, spinach, and a lot of the brassicas. Southwestern British Columbia has similar climate conditions so he sees potential for some of that sector to be developed here. He also believes there is an enormous opportunity to produce more organic seed.

Growing trays of microgreens taught Thoreau the most important lesson about seed. Doing a hundred crop cycles a year, he began to notice differences in how temperature, watering, and daylight hours affected the plants. However, he notes that the biggest determining factor is seed quality. He’s convinced that “you cannot override the poor quality of the seed with good growing practices.”

bcseeds.org


Michael Marrapese is the IT and Communications Manager at FarmFolk CityFolk. He lives and works at Fraser Common Farm Cooperative, one of BC’s longest running cooperative farms, and is an avid photographer, singer and cook.

Feature image: Karma Peppers. Credit: Chris Thoreau

Footnotes from the Field: Mother Earth is Heating Up

in 2019/Climate Change/Footnotes from the Field/Organic Standards/Pest Management/Winter 2019

BC Crop Adaptation & Diversification in Climate Change

Marjorie Harris BSc, IOIA V.O. P.Ag

I have stood on my back porch trying to imagine what a three kilometer high Cordilleran Ice sheet would have looked like here 12,000 years before the last big melt. It is estimated that people arrived in BC’s virgin landscape only 9,000 years ago.

Climate change on a geological time scale is undeniable. Long term climate change trends are difficult to observe from year to year and climate change over a lifetime may be imperceptible especially with a variety of shorter and longer climate cycles that can bring on their own periodic dramatic weather events.

Here in BC our usual climate patterns are regularly perturbed by El Nino, La Nina, and the Pacific Decadal Oscillation. The El Nino cycle fluctuates over three to seven years. During El Nino years inland temperatures tend to be warmer and drier with warmer coastal waters that push salmon stocks further north to colder water. La Nina years are characterized with colder inland temperatures with heavier winter snow packs and colder coastal waters. The Pacific Decadal Oscillation pattern shifts temperatures and precipitation over 20 to 30 year periods that correspond with dramatic shifts in salmon production.
We have now entered a new epoch of human induced climate change. Analysis of global climate data provides unequivocal evidence that worldwide average temperatures have risen significantly and at a more rapid pace then usually observed in geologic time frames. The effects of climate change are region specific and variable across the world. The effects are most pronounced in high latitude and high-altitude areas.

What are the predicted impacts of climate change on BC crop production, pest and disease burden, weed control, and water resources?

There has already been a measurable shift to warmer average temperatures year round throughout the province generally speaking. However, climate change impacts vary region to region. Warmer winter temperatures have been more pronounced in the far north. In the southern part of the province the growing season has lengthened. There will be more very hot days in summer and extended droughts with higher risks of fire with drier conditions.

Crop production: Key cash crops will lose viability to grow under new climate conditions. Growers will need to diversify in crop production to meet the new growing conditions. In the Okanagan region, longer warmer growing seasons favor red wine grape varieties over cooler temperature white and ice wine grape varieties. In the Okanagan wine producers are replacing grapevines for varietals that prefer more warmth.

Pest and disease burden: Milder winter temperatures allow a greater number of pests to survive overwintering, increasing the pest burden for the following season. Timing of pest control will need to be adjusted as pest life cycles respond to temperature increases. For strategic pest management increased pest surveillance will be crucial to prevention and management.

Pests will extend range to higher altitudes with warming trends. One example is the spread of the mountain pine beetle from north to south across the province under the influence of milder winters. Many invasive insects and disease vectors such as mosquitoes, ticks, and rodents, will be able to extend their geographical ranges.

For BC, a rare anthrax outbreak occurred in Fort St. John in October 2018, killing 13 bison. Rainy weather and warmer soil temperatures allowed the bacteria deep underground to migrate to the soil surface and become an infective agent.

Weed Control: It is predicted that invasive plant and weed species will expand their ranges with climate change impacts. Weeds with efficient seed dispersal systems will invade faster than weeds that rely on vegetative dispersal. Higher carbon dioxide levels may cause some weeds to grow more vigorously. Disturbed habitats and fields after drought will be more easily colonized; therefore, cover cropping will become more imperative.

Water management: Climate change is predicted to bring substantial changes to water resources. The type of precipitation is already observably shifting to more rain, intense rain events, and less winter snowpacks. Persistent droughts are becoming more common during the summer months.

Most of BC’s alpine glaciers are predicted to continue to retreat and disappear within the next 100 years. Warming spring temperatures coupled with reduced snowpacks will result in earlier springs freshets, reduced summer flows, and increased peak flows for many of BC’s watersheds.

What can we learn from the past: BC’s prehistoric climate records demonstrate that in previous centuries the province has experience more frequent severe droughts than have occurred in the past few decades, irrespective of climate change.

For the last 4,000 years the planet has actually been in a long cooling period. When key crops failed repeatedly, causing food shortages, people migrated to new locations and diversified crop production. Moving away to new lands is not a current option on our fully explored planet.

Anthropological Archaeologist Dr. Jade d’Alpoim Guedes conducted research into the rapid cooling periods of the last 5000 years and made some correlations to climate warming:

“The impacts of warming going forward are going to be quicker and greater, [than global cooling], and humanity has had 4,000 years to adjust to a cooler world,” d’Alpoim Guedes said. “With global warming these long-lasting patterns of adaptation will begin to change in ways that are unpredictable,” she said. “And there might not be the behavioral flexibility for this, given current politics around the world.”
Also mechanized, industrialized agriculture and global agricultural policy are pushing us toward mono-culture of crops, said d’Alpoim Guedes. “We need to move in the opposite direction instead. “Studies like ours show that bet-hedging and investing in diversity have been our best bets for adapting to climate change,” she said. “That is what allowed us to adapt in past, and we need to be mindful of that for our future, too.”

So, the question of the 11th hour is, can we as human beings cooperate together to manage ecosystems and agricultural food systems to adapt and diversify quickly enough to prevent ecosystem collapses and famines?


Marjorie Harris is an organophyte, agrologist, consultant, and verification officer in BC. She offers organic nutrient consulting and verification services supporting natural systems.

References:
WSU Insider, Science and Technology: https://news.wsu.edu/2018/10/31/history-offers-insights-into-climate-change-strategies/
d’Alpoin Guedes, J., Bocinsky, K. (2018). Climate change stimulated agricultural innovation and exchange across Asia. Science Advances, Vol. 4, No. 10.
From Impacts to Adaptation: Canada in a Changing Climate 2007
https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/assess/2007/pdf/ch8_e.pdf

GM Updates: Pulling Solutions out of Thin Air

in 2019/Climate Change/Crop Production/GMO Updates/Grow Organic/Organic Standards/Pest Management/Winter 2019

The Dangers of Investing in the Promise of the Techno-Fix

Lucy Sharratt

For 20 years, the world’s biggest seed and pesticide companies have profited from selling genetically modified (GM, also called genetically engineered) seeds that are tied to their brand name herbicide formulations. In fact, almost 100% of the GM crops now grown in Canada are genetically modified to be herbicide-tolerant; 88% globally. This reality is far from the promises that were made for this powerful new technology.

Canadians are still being asked to throw their support behind genetic engineering in the name of innovation and progress, to solve the biggest problems of our time. We are being asked to forgo precautionary regulations and mandatory GM food labelling to clear the way, and to direct significant resources away from seed systems that serve organic farmers. Our experience with genetic engineering provides some important lessons about the impacts of focusing on the potential of techno-fixes.

GM’s Solution is More Pesticides

Five GM crops are grown in Canada: corn, canola, soy, white sugar beet, and a very small amount of alfalfa. All are herbicide-tolerant except for a few GM sweet corn varieties that are only insect-resistant. GM herbicide-tolerant crops are grown on 409.7 million acres around the world and most of this is GM glyphosate-tolerant soy grown for animal feed, processed food ingredients and fuel or other industrial uses. Seventy seven percent of the world’s soy crop is now herbicide-tolerant. This GM soy cultivation relies on pesticides derived from petrochemicals and it is literally eating into the Amazon.

Instead of reducing pesticide use, GM crops have protected the market share for brand name herbicide formulations such as Monsanto’s Roundup. In Canada, herbicides sales have increased by 199% since the introduction of GM crops (1994-2016).

GM crops have facilitated a recommitment to herbicide use, and the overuse of glyphosate in particular. At first, some herbicide-tolerant crops helped farmers more efficiently apply herbicides but ultimately their use sped up and entrenched the existing pesticide treadmill, with more chemicals and more GM traits stacked together. It is not enough anymore to sell glyphosate-tolerant seeds—now GM seeds are marketed with tolerance to multiple herbicides at once, to deal with glyphosate-resistant weeds.

The evolution and spread of glyphosate-resistant weeds since 1996 is now rendering glyphosate herbicides redundant. In 2010, Monsanto began offering rebates to farmers when its herbicide failed to kill all their weeds. Now DowDupont (Corteva) is warning that weeds with resistance to multiple herbicides may prevent some farmers from growing certain crops altogether.

The corporate response to the failure of GM herbicide-tolerant cropping systems is to sell more products into that same system. In 2017, Monsanto launched its Roundup Ready™ Xtend™ dicamba-tolerant plus glyphosate-tolerant GM soy and, in 2018, DowDupont sold its GM corn Enlist™ that is tolerant to 2,4-D plus glyphosate. Such stacking of GM traits for tolerance to multiple herbicides is now the norm and is a doubling down on chemical agriculture.

The contrast between this reality and the grand vision for genetic engineering warns that even the most exciting science can have serious limitations in real world application. The science of genetic engineering itself has limitations but the promise is also limited by who owns and controls the technology.

Corporate Techno-Solutions to the Rescue

Rather than provide innovative solutions, GM has, so far, propped up an existing production model that relies on expensive farm inputs sold by the biggest seed and pesticide companies in the world. Until 2016, the global market for GM crops was dominated by six companies, Monsanto, Dupont, Syngenta, Dow, Bayer and BASF, that, together, controlled around 75% of the global pesticide market and 62% of the commercial seed market. After a wave of mergers, these markets are now controlled by just four companies: Bayer bought Monsanto, Dow and Dupont merged, ChemChina bought Syngenta, and some of Bayer’s and Monsanto’s business was sold to BASF. This corporate concentration has also eliminated or constrained non-GM seed options for some farmers.

It is important to evaluate the promises that were made because they are still being used to argue for removing regulations and because these same promises are being repeated with the advent of new genetic engineering techniques. The techniques of gene editing, such as CRISPR, are being hyped with the promise of achieving everything that the earlier techniques could not. However, promoting a new technology relies on looking to the promise around the corner and overpromising is often also used to build investment interest. The danger is that we are building a vision for our future based on corporate investment strategies that often pull solutions out of thin air, instead of looking to the ground where farmers are already innovating.

The GM solution continues to fail. At the end of 2018, the Government of South Africa rejected Monsanto’s request to approve GM drought-tolerant corn because the company’s data was insufficient to demonstrate that the corn was actually drought tolerant. Also, while the famed Vitamin-A enriched GM “Golden Rice” is getting closer to market, it still contains less than 10% of an equivalent amount of beta-carotene in carrots. Meanwhile, groups in the Philippines argue that, “securing small farmers’ control over resources such as seed, appropriate technologies, water, and land is the real key to improving food production and eradicating hunger and malnutrition.”(1) Such complicated solutions do not, however, provide the opportunity to sell new products.

Companies are promising technological solutions to “feed the world” and halt climate change. Such techno-fix silver-bullets are compelling—they appear simple and elegant—but if we rely on corporations to develop the solutions to our problems, we will be buying our solutions, if they ever materialize. We can also ill afford to wait for the perfect technology to solve our problems. This approach invites dependence and inertia.

In the meantime, organic solutions are already in the ground. Further agroecological progress is hindered by a system that is set up to facilitate and promote the GM techno-fix rather than support locally adapted seed and farmer control. Faced with the moral imperative to take urgent action to stop climate change, we need to support the nimble and diverse solutions already available to us—solutions in the hands of farmers in Canada and around the world.

cban.ca


Lucy Sharratt is the Coordinator of the Canadian Biotechnology Action Network (CBAN). CBAN brings together 16 groups to research, monitor and raise awareness about issues relating to genetic engineering in food and farming. CBAN members include farmer associations, environmental and social justice organizations, and regional coalitions of grassroots groups. CBAN is a project on the shared platform of Tides Canada, a registered charity.

References:

GRAIN, MASIPAG, & Stop Golden Rice! Network. (2018). Don’t get fooled again! Unmasking two decades of lies about Golden Rice. grain.org/article/entries/6067-don-t-get-fooled-again-unmasking-two-decades-of-lies-about-golden-rice

1 14 15 16 17 18 26
Go to Top