Tag archive

research

Organic Stories: UBC Farm, Vancouver, BC

in 2019/Climate Change/Crop Production/Current Issue/Grow Organic/Land Stewardship/Organic Stories/Past Issues/Seeds/Winter 2019

Cultivating Climate Resilience in a Living Laboratory

Constance Wylie

Surrounded by forest and sea, the University of British Columbia is a quick 30 minute bus ride west of downtown Vancouver. A city unto itself, more than 55,800 students and close to 15,000 faculty and staff study, work, live, and play there. A small but growing number also farms. Countless hands-on educational opportunities are offered at the UBC Farm: from internships and research placements for university students, to day camps and field trips for school children, to workshops and lectures for interested community members. There is something for everyone, including bountiful amounts of fresh organic produce.

Globally, agriculture accounts for 25% of the world’s greenhouse gas emissions. Half of that is from land use changes such as deforestation, while the other half is attributed to on-farm management practices and livestock. Moreover, our food systems are contributing massive amounts to our ecological footprint. Food accounts for about 50% of Vancouver’s footprint, according to UBC Professor Emeritus William Rees. Evidently, food can, and must, be an agent of change. In our rapidly changing world where the future of yesterday is uncertain, farmers are on the front line.

The folk at UBC’s Centre for Sustainable Food Systems are digging into these challenges using their very own “living laboratory,” aka UBC Farm, as a testing ground. It is a hotbed of leading agricultural research with “aims to understand and transform local and global food systems towards a more sustainable food secure future,” according to the farm website. It is also a green oasis where everyone is welcome to find a quiet moment to connect with nature; the hustle and bustle of campus dissipates on the wings of beneficial insects and chirping birds.

At 24 hectares, this certified organic production farm makes for a unique academic environment. As Melanie Sylvestre, the Perennial, Biodiversity, and Seed Hub Coordinator, puts it, “having a farm that does research in organic production is unique in BC and vital for the future of organic agriculture” in the province.

We can all whet our farming practices by reviewing some of the 30 ongoing research projects at UBC Farm. It should come as no surprise that many of the projects relate coping with the effects climactic changes have on agriculture, locally and globally.

UBC Farm. Credit Constance Wylie

Organic Soil Amendments

One such project is Organic Systems Nutrient Dynamics led by Dr. Sean Smukler and Dr. Gabriel Maltais-Landy. Their research compares the performance of typical organic soil amendments: chicken and horse manure, blood meal, and municipal compost. Depending on the type and amounts of organic soil amendment applied, crop yield will vary, and so too will the environmental impact. They found that often the highest yields result from over fertilization of Nitrogen and Phosphorus, which leads to greater GHG emissions. For example, chicken manure releases potent levels of GHG emissions.

It is a challenging trade-off to negotiate. This information is critically important for the organic grower trying to decrease their environmental impact. Another topic of study was the value of rain protection for on-farm manure storage: for long-term storage, it is always best to cover your manure pile!

Climate Smart

Were you aware that the application of black or clear plastic mulch with low longwave transmissivity can increase soil temperatures by about 40%? Conversely, a high reflective plastic mulch can reduce soil temperatures by about 20%. These are some of the findings of the Climate Smart Agriculture research team, composed of Dr. Andrew Black, Dr. Paul Jassal, and PhD student and research assistant Hughie Jones. In an interview for his researcher profile, Hughie explains that through his work he is “trying to get direct measurements … so that people have access to hard, reliable data” for enhancing crop productivity with mulches and low tunnels for season extension. “By increasing the amount of knowledge available we can reduce the amount of guessing involved for farmers, increasing their predictive power.” When it comes to getting the most out of a growing season, less time spent with trial and error can make a huge difference to your yields and income.

Fields of curcubits at UBC Farm. Credit Sara Dent @saradentfarmlove

Seed Savers

With the fall frost of 2018, the first phase of the BC Seed Trials drew to a close. The collaboration between UBC Farm, FarmFolk CityFolk, and The Bauta Family Initiative on Canadian Seed Security kicked off in 2016 to run these trials. Lead scientist and project manager Dr. Alexandra Lyon explained that the first phase asked, “What are the most hardy, resilient, well adapted varieties that we already have access to?”

More than 20 farms from across the province were involved in trialing seeds including kale, beets, leeks, and spinach. These varieties were chosen as crops that are already known to perform well in BC. The seeds in question are all open-pollinated varieties which boast “higher resilience then hybrid varieties in the face of climate change,” says Sylvestre, who has also been a leading figure in the seed trials.

While farmers may choose hybrid seed for their higher yields and other selected traits, Sylvestre explains that they lack “horizontal resistance, the concept of having diversity within a population allowing it to withstand various climatic changes. Through our selection process, we try to achieve horizontal resistance and therefore offer new varieties that would be better suited in various growing scenarios. It is important to understand that goal of horizontal resistance is among multiple other goals to reach varieties with agronomic traits that will be desirable to farmers and customers.”

“Community building around our local seed systems has been significant through this research project,” Sylvestre adds. The seed trials are also contributing to community building at UBC Farm itself. Rather than compost the crops grown for the seed trials, they are harvested and sold at the weekly farmers market.

With new funding secured from the federal government, the BC Seed trials will continue for at least another five years. Going ahead, the “role of UBC Farm is to train and connect farmers for farmer led plant breeding” says Lyon. While institutional academic research will play a significant role in seed selection and adaptation, “lots of types of seed trialing will be really important.” This means that farmers across the province “supported with tools and knowledge for selecting and saving seed” can contribute significantly to our collective seed and food security. Lyon encourages farmers to reach out with their experiences with regards to climate change and seed. She and members from the team will also be at the COABC conference February 22-24, 2019 with the intention to connect with BC farmers.

Ultimately, at UBC farm, “all the issues people are working on play into what we will need to adapt to climate change” says Lyon. The formal and informal networks made at UBC Farm are really starting to take root across the province. This is an amazing resource for us all to profit from. Take advantage of these slower winter months to dig in and digest the information available to us—it may very well change the way you approach your next growing season.

FOR MORE INFO

Check out UBC Farm online at: ubcfarm.ca

More on Organic Systems Nutrient Dynamics: ubcfarm.ubc.ca/2017/06/01/organic-soil-amendments

More on UBC’s Climate Smart Agriculture research: ubcfarm.ubc.ca/climate-smart-agriculture

For BC Seed trial results and updates: bcseedtrials.ca

Dr. Alexandra Lyon can be contacted at alexandra.lyon@ubc.ca

Seed grown at UBC farm is now available through the BC Eco-Seed Coop. Keep an eye out for two new varieties: Melaton leek and Purple Striped tomatillo.


Constance Wylie left her family farm on Vancouver Island to study Political Science and the Middle East at Sciences Po University in France, only to return to BC where she took up farming, moonlighted as a market manager, and got a PDC in Cuba and Organic Master Gardener certificate with Gaia College. She now lives, writes, and grows food in Squamish with her dog Salal.

Feature Image: UBC Farm. Credit: Sara Dent @saradentfarmlove

Footnotes from the Field: Organic Nutrient Management

in Crop Production/Footnotes from the Field/Tools & Techniques/Winter 2017

Marjorie Harris, BSc, IOIA VO, P.Ag.

New Techniques for Organic Nutrient Management

As the International Year of Pulses draws to a close it is nice to give a tip of the hat to pulses, the peas and beans, and to their leguminous cousins, alfalfa and the clovers. Research has demonstrated that legumes in symbiotic relationship with Rhizobacteriums biofertilize the cropping system by fixing prodigious amounts of nitrogen from the air. Able to deliver hundreds of pounds of nitrogen per acre, legumes are an extremely valuable green manure crop to include in crop rotations.

2016 marked the 25th anniversary for Canada’s oldest organic vs conventional comparative study conducted by the University of Manitoba at the Glenlea Research Station. The organic cropping research primarily focuses on long term crop rotations for grains and green manures.

This year Martin Entz, lead researcher, in conjunction with Joanne Thiessen Martens, and Katherine Stanley, rolled out a two year consultant training program for their new Organic Nutrient Management (ONM) system. Currently only 10 consultants from across Western Canada are enrolled in the hands-on training working directly with farmers to implement the ONM system.

The ONM program is designed to track the soluble and plant available nutrients Nitrogen (N), Phosphorous (P), Potassium (K), and Sulphur (S) as they move on and off the farm as imports and exports through an 8 year crop rotation plan. The ONM also includes livestock production within the system.

New nutrient monitoring techniques are employed that rely on leguminous plant tissue bioassays to understand how plant tissue nutrient concentrations relate to soil fertility conditions. Interpreting this kind of data is still quite new, although research has proven that this type of data can lend useful insight for long term soil fertility nutrient management strategies.

There are two parts to the data development. Part 1 determines the nitrogen xation and nutrient concentration rates of N, P, K, S for the legume green manure cover crops on a per acre basis. Part 2 creates a net summary balance of N, P, K, S for imports and exports over an 8 year crop rotation on a per acre and per whole field basis.

image003

Part 1: Determine level of nitrogen biofertilization in pounds per acre and green manure nutrient uptake.

Step 1: Dig up legume roots to check for nodular growth and nodular activity. It is important to inoculate the legumes with the appropriate symbiotic Rhozobacterium for optimum nodular development. The root colonizing Rhizobacterium form large ball-like nodules on the roots of peas and beans, and smaller at, hand shaped nodules on clover and alfalfa roots. When the nodules are actively fixing nitrogen the inner flesh of the nodule will turn a reddish color when broken open and exposed to the oxygen in air. If the inner flesh of the nodule is brown, green or clear the nodule is not actively fixing nitrogen.

Step 2: Cut biomass samples of legumes from a predetermined number of quadrants per field. Sort the legumes from the cut vegetation to record the percentage of legume vs weeds and other plants, then send the total biomass for plant tissue nutrient analysis.

Step 3: From the same plant sampled field take soil samples at 6 and 24 inch depths and send for nutrient analysis. Phosphorous and Potassium are relatively stable in the top six inches of soil whereas Nitrogen and Sulphur are more mobile and tend to leach down through the soil profile, the 24 inch depth sample will capture this movement.

Step 4: Enter the plant tissue and soil fertility results into the specified Excel spreadsheet to calculate nitro- gen biofertilzation per acre. The plant tissue results will also demonstrate if the legumes have sufficient P, K, & S for optimum growth. Long term research has shown that many legumes only need a soil test P at 5 – 9 ppm, to produce optimum nitrogen. However, a soil test rating of 5 – 9ppm P will be reported as Low as a standard soil test interpretation. Martin Entz’s research demonstrates that 5 – 9ppm P is sufficient for good legume growth. Most other crops will require supplementary nutrients for optimum growth.

The three main supplementary forms of phosphorus are: livestock manures, rock phosphate, and animal feeds. Rock phosphate has been shown to be a very slow releaser of plant available phosphorous. The ONM general recommendation for supplying a plant bioavailable form of P is a periodic light application of livestock manure, whether composted or spread raw followed by a green manure cover crop to catch the nutrients up into the plant tissue for slower release of plant available P.

Nitrogen Fixing Nodules

Part 2: Determining the net summary balance import and export of nutrients N, P, K, S, through an 8 year crop rotation per acre and per whole field.

Step 1: Send samples of exported farm biomass, seed, plant, and livestock manure for nutrient testing. Enter results into the ONM Excel spreadsheet. The import, export, and nitrogen fixation biofertilization date is entered and automatically calculated per field per year and then summarized over the 8 year crop rotations on a Whole Field (total acreage) and Per Acre basis.

Examples of 8 year rotation: Table 1.1 is the standard crop rotation the farmer has traditionally employed. The farmer noticed that his yields were falling and that weeds were starting to encroach the crop.

Table 1.1 – Traditional Crop Rotation Plan

image010

Table 1.2 – Modified Crop Rotation Plan

image011

This new approach to Organic Nutrient Management over long term crop rotations employs biomass nutrient uptake monitoring and soil testing. The laboratory data generated is entered put into the ONM Excel spreadsheet for net import and export nutrient calculations. The summary results allow the operator to visualize the long term results of various combinations of crop rotations and nutrient supplementations.

Regular green manure crop rotations provide nitrogen biofertilization and assists in the building and maintenance of soil fertility. Higher seeding rates of legume and cover crop can help suppress weed pressures. Plowing down green manure cover crops, straw, and plant waste helps to increase organic matter in the soil. Overall higher soil fertility will increase crop yields and promote healthier disease resistance plants due to sufficient plant available nutrients for optimum growth conditions.

The Glenlea long term research project has proven that organic rotational cropping systems that rely on perennial forage legumes are 222% more energy ef cient than conventional farming techniques. The energy efficiency in the organic management system was attributed to the vast reduction in the use of fossil fuels and the reduction of greenhouse gas emissions associated with burning them.


This is a very brief overview of the University of Manitoba’s new Organic Nutrient Management system. For more in-depth information about implementation and to develop long term nutrient management strategies using green manures and nutrient supplements contact Marjorie Harris, Organic Nutrient Management consultant, at ecoaudit@telus.net.

 

 

Go to Top